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43Marcja. We then worked together on the model theory of modal logic andwrote [MM77] Some time ago you could still �nd street vendors in winterselling castagnaccio which was baked on an open �re. The ingredients aresimple: Chestnut 
our, olive oil, sugar, raisins and pinenuts. The originalreceipe does not appear in Artusi's classical cooking book, but it does ap-pear in the very enjoyable and nostalgic book by E. Servi{Machlin [SM81].Incidentally, she is the sister of the Italian logician M. Servi who did somework on the model theory of categories with �nite products [Ser71]. As itis di�cult to �nd chestnut 
our outside of Tuscany, let me give a modi�edversion of the dish.Take one can of canned, unsweetend chestnut pur�ee. Add a third ofthe can of olive oil and half the can of sugar and mix in a food processorto a homogeneous paste. Add a third of the can of regular 
our and keepmixing till smooth.Spread the paste on a 
at cooking sheet, not more than a small �ngerthick. It is advisable to rub the sheet with margarine or olive oil beforespreading the paste. Now stick the pinenuts and raisins into the paste atyour liking. Bake medium hot for about 40 minutes (till the paste hardens)but be careful not to burn it.Let cool and break into pieces. Best served with co�ee (expresso) andGrappa (di Brunello).
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428.13: CorollaryHALFCLIQUE and HAM are not de�nable in DTC1;TC1;ATC1,the First Order Logics augmented by the predicate transformersDTC; TC;ATC of size 1.This gives us a quick example for interesting families of pairs of ordered�nite structures which are n-isomorphic in TC1.8.14: CorollaryThere are functions f; g : N 7! N such that for every n 2 N f(n) 6= g(n)and the words af(n)bf(n) and af(n)bg(n) are n-isomorphic (equivalent) inTC1.In [dR87] it is only proved that HAM is not de�nable in existentialMonadic Second Order Logic.8.5 The Games and Pumping LemmasThe various games described in this section are used to show non{de�nability results. Corollary 8.14 is a model theoretic version of the wellknown Pumping{Lemma for regular languages. Theorem 8.11 is a modeltheoretic version of a Pumping{Lemma for L. Similar Pumping{Lemmascan be formulated for other complexity classes C, provided C is capturedby some logic, for which there are suitable games. It remains a challengingopen problem, how to exploit this observation. Ressayre has done a �rststep into this direction [Res88, Res].9 ConclusionsWe, that is if the reader is still with me, have travelled through the land-scape of Model Theory coming from the land of Theoretical ComputerScience. There are many places we have not visited, and even where wedid, we did not explore them enough. We have seen some of the land'shistory and cultural system and hinted at its connections with DatabaseTheory and Logic Programming. We have explored its deeper connectionsto Computer Aided Geometry. But we have spent most of our time explor-ing the model theoretic aspects of the question P 6=NP and its provabilityin formal systems of arithmetic.The chapter is called an `Appetizer'. It should tempt more than onereader to travel more. If your appetite has been whetted, let me invite youfor a treat:Castagnaccio: This is a popular sweet in Tuscany of which I have learntduring my own travels in the land of Model Theory (and Tuscany) from A.
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418.12: TheoremHALFCLIQUE and HAM are not de�nable in Monadic Second OrderLogic (with arbitrary alternation of quanti�ers) and hence not de�nable inDTC1;TC1;ATC1.Proof. We present here a new and quick but surprising proof of the aboveresult, cf. [Mak92b]. Recall that B�uchi's theorem states that a languageL is regular (=recognizable by a �nite automaton) i� the set L of wordsconsidered as �rst order structures with a linear order is de�nable by aformula in Monadic Second Order Logic. Note that the proof of B�uchi'stheorem in [Lad77] also uses Ehrenfeucht-Fra��ss�e games.The proof has several stages:(i) First we note that the language fanbn : n 2 Ng is not regular, cf.[HU80]. This is usually proved by the Pumping Lemma, which is insome sense an automata theoretic counterpart of the Ehrenfeucht-Fra��ss�e games.(ii) Next we use B�uchi's theorem and conclude that the set of words cor-responding to anbn is not de�nable in Monadic Second Order Logic.(iii) Note that a complete bipartite graph is Hamiltonian i� both sets havethe same cardinality.(iv) Now assume, for contradiction, that HAM were de�nable by a �{formula � of Monadic Second Order Logic. Let w 2 fa; bg� be a word.We de�ne a binary relation Ew on w by (i; j) 2 Ew i� i 2 Pa andj 2 Pb. Ew makes w into a complete bipartite graph. Ew is de�nableby a �rst order formula � over �words. Substituting R in � by � wouldgive us a formula in Monadic Second Order Logic which assures thatthis graph is Hamiltonian, hence would de�ne the language fanbng,a contradiction.(v) ForHALFCLIQUE we proceed similarly. We �rst note that the lan-guage HALF (a) where at least half the letters are a's, is not regular,again by the Pumping Lemma. Hence HALF (a) is not de�nable inMonadic Second Order Logic.(vi) We now de�ne Ew by (i; j) 2 Ew i� i 2 Pa or j 2 Pa. Ew makesw into a graph where the a's form a clique. Using this in the aboveargument completes the proof.Note however, the speci�c sequence of pairs of ordered graphs Gn;Hn,which we construct to show this, can be separated by a TC2{formula, i.e.a formula with the predicate transformer TC of size 2.
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40similarly motivated games are introduced for Fixed Point Logic which is,on ordered structures, of the same expressive power as ATC. However, thegame introduced in [dR87] is only shown to be sound, which su�ces forthe non{de�nability result discussed there.8.4 More Non{de�nability ResultsWe discuss here brie
y the case ofTC, the other cases being similar, but nottrivially so. The games naturally induce a sequence of equivalence relations�nTC between structures which we call n{isomorphic for TC. In [Cal89]Cal�o proves soundness and completeness of these equivalence relations inthe sense that two structures are n{isomorphic for TC i� they satisfy thesame formulas of quanti�er depth n. As all these logics contain predicatetransformers of arbitrary arity k, the logic TC can be viewed as a sequenceof logics TCk with the arity of the predicate transformer not exceeding k.TC1 is the logic with the transitive closure applied only to binary relationsof 1{tuples. Our games also allow to characterize de�nability in TCk.In [Imm87] it is shown that a class of �nite ordered structures is de�n-able in these logics i� its recognizability is in certain complexity classes.In this sense we speak of logics capturing complexity classes and we havefor ordered structures, by abuse of notation, L = DTC, TC = NL andATC = P. NP was shown in [Fag74] to capture existential Second OrderLogic. As an application of our work we state a necessary and su�cientcondition for separating the complexity classes L, NL, P and NP respec-tively which is of pure model theoretic character. In the case ofNL 6= NPthis condition can be stated as follows:Let HALFCLIQUE be the set of ordered graphs which contain aclique of half its size. Let HAM be the set of ordered graphs whichcontain a hamiltonian path. Note that HALFCLIQUE and HAM areNP{complete, cf. [GJ79].8.11: TheoremNL 6= NP i� there is a sequence of pairs of ordered graphs Gn;Hn suchthat(i) Gn�nTCHn and(ii) Gn 62 HALFCLIQUE but Hn 2 HALFCLIQUE.The same holds for HALFCLIQUE replaced by HAM or any other NP{complete problem.The construction of such families of graphs may be very hard and possi-bly requires probabilistic methods similar to the ones used in [AF90]. Thefollowing result nevertheless sheds some light on the problem.
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39(ii) A and B are n-equivalent i� they satisfy the same formulas of quan-ti�er depth n.For many applications the following corollary is most useful:8.9: CorollaryA class of �nite � -structures K, � �nite and without function symbols, isde�nable by a formula � of quanti�er depth n i� K is closed under n-equivalence.Ehrenfeucht{Fra��ss�e{games can be used to obtain non{de�nability re-sults. To prove them we combine theorem 8.8 and proposition 8.6.8.10: TheoremThe following classes of �nite structures are not �rst order de�nable:(i) The class of connected graphs;(ii) the class of planar graphs;(iii) the class of hamiltonian graphs;(iv) the class of �nite linear orders with an even number of elements.For a detailed discussion, cf. [Gai82, AF90].8.3 Second Order Logic and its SublogicsEhrenfeucht{Fra��ss�e{games can be generalized and adapted for various ex-tensions of �rst order logics. In the case of Second Order Logic (MonadicSecond Order Logic), one simple adds a new type of moves where theplayers choose relations (unary relations). Additionally the winning con-dition has to be modi�ed correspondingly. For the transitive closure logicsDTC = FOL(DTC), TC = FOL(TC) and ATC = FOL(ATC) in-troduced in [Imm87] and section 7, such games were explicitly studied in[Cal89, CM91]. The existence of similar games as introduced in this pa-per, already follows from successive papers cumulating in [MM85]. There,they are de�ned for logics with generalized quanti�ers rather than predi-cate transformers. Recently, a logic equivalent to TC based on generalizedquanti�ers only was exhibited in [She91]. However, the explicit use of suchgames for the case of predicate transformers stemming from transitive clo-sure operators was �rst introduced in [Cal89]. It has been motivated bybut is distinctly di�erent from the games introduced in [MZ80]. It shouldalso be noted that our explicit de�nition of these games is more straight-forward than their derivation in the framework of abstract model theoryand generalized quanti�ers as described in [BF85] and [MM85]. In [dR87]



www.manaraa.com

38(i) A is n-equivalent to B i� A is n-isomorphic to B;(ii) A is n-equivalent to B for every n 2N i� A is �nitely isomorphic toB;(iii) A is 1-equivalent to B i� A is partially isomorphic to B.As an exercice, prove proposition 8.4 both, in the formalism of gamesand in the formalism of families of partial isomorphisms.8.6: Proposition(i) Let � = ;. � -structures then consist of their universe only. Let Aand B two � -structures. A and B are n-equivalent i� either both haveat most n elements and have the same number of elements or bothhave at least n elements.(Find the corresponding statement for linear orders).(ii) Let � have no function symbols. There are for every n two � -structures A and B such that A and B are n-equivalent, A has exactlyn elements and B is in�nite.(iii) Let � have exactly one binary relation symbol. There are for every ntwo � -structures A and B such that A and B are n-equivalent, andA is a connected (planar, hamiltonian) graph and B is not connected(planar, hamiltonian).8.2 Completeness of the GameWe are now ready to formulate the connection between First Order Logicand the winning strategies for the game E�n(A;B).8.7: NotationWe denote by FOLk;n(� ) the set of � -formulas with all its variables amongv1; : : : ; vn and all its free variables among vk+1; : : : ; vn. FOLn;n are theformulas without free variables of quanti�er depth n.8.8: Theorem (Ehrenfeucht{Fra��ss�e)Let � be without function symbols and �nite. Let A and B be two � -structures.Let a1; : : : ; an�k and b1; : : : ; bn�k be elements of A and B respectively.(i) Player II has a winning strategy for k more moves in the gameE�n(A;B) starting in the position described by a1; : : : ; an�k andb1; : : : ; bn�k i� A and B satisfy the same formulas of FOLk;n(� ),where the variable vk+m takes the value ak+m or bk+m respectively.
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37After this playful de�nitions we are motivated enough to give a de�-nition of n-equivalence of � -structures in terms of partial functions. Thewinning strategies for E�n(A;B) will be described by a �nite family of non-empty sets of partial isomorphisms fImgnm=0 in the following way.8.2: De�nitionLet A and B be two � -strutures. We say that A is �nitely isomorphic toB if and only if there is a family fIng1n=0 of non empty sets of partialisomorphism from A to B such that:constants: for every f 2 In and for every constant symbol c 2 � , IA(c) 2Dom(f).(1) forth: for every f 2 In and for every a 2 A there is a g 2 In�1extending f such that a 2 Dom(g).(1) back: for every f 2 In and for every b 2 B there is a g 2 In�1extending f such that b 2 Im(g).The following are two special cases of this de�nition which are of par-ticular interest:8.3: De�nition(i) If In = I constant for every n 2 N , we say that A is partiallyisomorphic to B.(ii) If there is only a �nite family fImgnm=0 of partial isomorphisms withthe back and forth properties, we say that A is n-isomorphic to B.8.4: PropositionLet A, B be two � -structures.(i) If A and B are partially isomorphic then A and B are �nitely iso-morphic.(ii) (Cantor) If A and B are both countable and partially isomorphicthen A and B are isomorphic.(iii) If A, B are �nite, then A is �nitely isomorphic to B if and only if Ais isomorphic to B.The relationship between the game and the families of partial isomor-phisms is given in the following:8.5: PropositionLet A and B be two � -structures.
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36 � E�n(A;B) is played by two players I and II, called spoiler and duplicatorrespectively. The game is played for n moves, where n is a naturalnumber. The `board' of the game consists of two � -structures A andB with universe A and B respectively. Here we make a restriction on� in as much as � may not contain any function symbols.� The moves of the game look as follows:In the k-th move, player I chooses one of the structures A (or B) andan element ak 2 A (bk 2 B) and player II replies by choosing anelement bk 2 B (ak 2 A).� After the n moves they have chosen elements (a1; : : : ; an) and(b1; : : : ; bn) Player II has won, if the map f(ai) = bi; i � n is apartial isomorphism between the � -structures A and B.� We look also at the in�nite game E�1(A;B) which is de�ned similarly,but with the moves numbered n for every n 2N.The interesting case here is when player II has a winning strategy. Tomake this notion precise we need some notational e�ort. Intuitively, awinning strategy is a catalogue of moves which lists all possible movesof the opponent with at least one answer which will guarantee ultimatelythat player II wins. With this informal de�nition in mind, we proceed nowfurther:� Let A and B be two � -structures. We say that A and B are n-equivalent (1-equivalent) and write A �n B, if player II has a win-ning strategy in the game E�n(A;B) (E�1(A;B)).� The relation A �n B between � -structures is indeed an equivalencerelation, i.e. we have:(i) A �n A;(ii) A �n B i� B �n A, and(iii) If A �n B and B �n C then A �n C.8.1: Examples(i) If A ' B then A �n B for every n 2 N.(ii) Let � consist of one binary relation symbol and let Gn be the � -structure which, viewed as a graph, is the complete graph on n el-ements, and let Hn be the � -structure which, viewed as a graph, isthe complete bipartite graph on n elements. Analyze for small l;mand n whether Gl �m Hn.
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357.5 Logics Capturing Complexity ClassesThe framework developed so far allows us to state a very general theoremabout logics capturing complexity classes. Theorems of this type were�rst stated in this form by Immerman [Imm87], but were preceeded andmotivated by Fagin's work [Fag74]. We �rst need a de�nition.7.22: De�nitionLet K be a class of natural structures which is C{complete for L reductions.We denote by L(K) the logic obtained from L by adding the quanti�ers (orpredicate transformers) associated with K for all sizes k 2N. If L is FirstOrder Logic we write FOL(K) instead of L(K).7.23: TheoremLet C be a complexity class which contains L. Let L be a semi{regularC{computable logic. Let K be a class of natural structures C{complete forL{reductions. Then L(K) captures C.7.24: Corollary (Immerman)(i) FOL(DTC) captures Logarithmic Space L.(ii) FOL(TC) captures Nondeterministic Logarithmic Space NL.(iii) FOL(ATC) captures Polynomial Time P.Recently, I. Stewart [Ste91a, Ste91b] has taken a similar, but less generalapproach to show that7.25: Corollary (Stewart)FOL(3COL) captures Nondeterministic Polynomial Time NP.These results make the problems L 6= (?)NL, P 6= (?)NP or evenL 6= (?)NP into problems of de�nability by computable quanti�ers. Weshall see in the next section how to convert them into problems of modeltheory.8 Ehrenfeucht{Fra��ss�e GamesIn this section we introduce a very powerful tool with many applicationsin the analysis of the expressive power of First Order Logic. The tool iscommonly known under the name Ehrenfeucht{Fra��ss�e Games E�n(A;B).8.1 The GamesInformally the Ehrenfeucht{Fra��ss�e Games are described as follows:
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34An analogous de�nition can be given for predicate transformers instead ofquanti�ers.7.19: De�nitionLet K be a class of natural �{structures. Let C � D be complexity classesand let L be a C{computable logic. We say that K is D{complete forL{reductions if(i) K is in D and(ii) every class K1 of �1{structures in D is L{reducible to K.The traditional de�nition of NP{completeness says that K is NP{complete i� K is NP{complete for P{reductions. Our de�nition is modeltheoretic counterpart of the more usual computational de�nition ofK beingD{complete for C{reductions. The exact relationship between the twode�nitions is given by the following proposition and is proven using theorem7.12 or theorem 7.177.20: PropositionLet K be a class of natural �{structures. Let C � D be complexity classesand let L be a C{computable logic.(i) If K is D{complete for L{reductions then K is D{complete for C{reductions.(ii) There is are K's which are D{complete for C{reductions, but whichare not D{complete for L{reductions.The following are some examples of such complete classes K, cf.[Imm87, Imm88, Ste91a, Ste91b].7.21: Proposition(i) (Immerman) DTC is L{complete, TC is NL{complete and ATCis P{complete for �rst order reductions.(ii) Stewart The class 3COL of three{colourable graphs is NP{completefor �rst order reductions.Note that DTC, TC and ATC give rise to computable quanti�ers withconstants or, better to predicate transformers, whereas 3COL can best beused as a computable quanti�er.
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33extended to a unique �0{structure B 2 J for which R(z(y1); z(y2); :::; z(yr))is true.7.16: Example(i) Let � consist of one binary relation symbol R and �0 = � [ fSg withS another binary relation symbol. TC (DTC) consists of the class of�0{structures such that the interpretation of S is the (deterministic)transitive closure of the interpretation of R. Both can be used tode�ne predicate transformers of arbitrary size.(ii) Similarly one can de�ne ATC for the alternate transitive closure ofa relation over a unary predicate, cf. [Imm87].7.17: TheoremLet L be a C{computable logic. If J is in C and in co-C then LpJ is aC{computable logic.A similar theorem can be formulated for semi{regular logics by only re-quiring that K be inC and restricting the predicate transformer to positiveoccurrences.7.4 L{ReducibilityImmerman and Dahlhaus [Dah82, Dah83, Imm87] independently intro-duced the notion of classes K of �{structures complete for a complexityclass C by �rst order reductions. We present here a slight generalization:7.18: De�nitionLet K1 be a class of �1{structures and K2 be a class of �2{structures.(i) K2 is k�L{reducible to K1 for a natural number k if K2 is de�nableby a formula of the form QkK1 (�1; : : : ; �n)where all the �'s are L(�2) formulas and QkK1 is the quanti�er de-�ned by K1 of size k.(ii) K2 is L{reducible to K1 if it is k � L{reducible for some naturalnumber k.(iii) If L is First Order Logic we speak of k{�rst order reducible. (Immer-man in [Imm87] considers the case where the �'s are even quanti�erfree).
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32contains at least one relation symbol. Let �` = � [ fRg where R is arelation symbol of arity r not in �.(i) We say that a �0{structure A0 is an expansion of a �{structure A, ifthey have the same universe and all the relations of � are identical.(ii) Let J be a set of natural structures over �0. J is a predicate trans-former if for every �{structure A there is at most one expansionA0 2 J .(iii) Let C be a complexity class and J be a predicate transformer. We nowsay that J is C{computable if, given a �{structure A and an r-tupleof elements from the universe, (b1; b2; :::; br), the problem whetherR(b1; b2; :::; br) is true in A0 can be decided in C. (Similarly we de�newhen J is in co-C).We de�ne LpJ , the extension of L with aC{computable predicate trans-former by the addition of one more formation rule as follows:7.14: De�nition (Syntax)(i) Let �1; �2; :::; �n;  1 be formulas in LpJ such that for each relationsymbol Ri of arity ai in �, there is a formula �i with ai free variableswhich do not appear in any other of the �'s.Then the following is a formula in LpJ :Px1; x2; :::; xmy1; y2; :::; yr(�1; �2; :::; �n)where the variables x1; x2; :::; xm are bound, m is the sum of the ai'sand the variables y1; y2; :::; yr are free. We refer to such a formula asa formula of form (**).(ii) As in the case of quanti�ers we can consider the formula above as apredicate of size 1 and in a similar way de�ne predicates of any size.Also the meaning function for LpJ is very similar to the case of quan-ti�ers. We only give the modi�cations needed.7.15: De�nition (Semantics)The meaning function MLpJ (�;A; z) is de�ned as the extension of themeaning function of L in the following way. Let � be a �{formula of theform (**), let A be a �{structure. Let z be an assignment of the free vari-ables in � to elements in A the universe of A and z0 be the restriction of zto the variables di�erent from the y's.Then MLpJ (�;A; z) = 1 i� the �{structure de�ned by �;A and z0 can be
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31(i) Its universe is the universe A of A (in the case were the quanti�er isof some size k > 1, each element in the de�ned structure is a vectorof size k of elements from A).(ii) Let Raii be the i'th relation in � (its arity is ai). We associate with itthe formula �i ,which has ai free variables not appearing in any otherof the formulas of (*) : xj+1; :::; xj+ai, and de�ne R(b1; b2; :::; bai) =MLqK (�i;A; z0). Where z0 is a substitution as follows : for each freevariable xj+p from xj+1; :::; xj+ai we substitute the element bj+p. Foreach other free variable in �i (which is also free in �) we substitutethe corresponding element from z.Now we put MLqK (�;A; z) = 1 i� A� 2 K.7.11: ExampleLet � consist of one binary predicate and let 3COL be the class �{structures, which are 3{colourable graphs. A formula of the form (*) istrue in a �{structure A if �1 de�nes a 3{colourable graph on the universeof A. The case of the same quanti�er but choosing size 2 binds four vari-ables. A formula of the form (*) is true in a structure B if the 4{aryrelation de�ned by �1 de�nes a 3-colourable graph on the pairs of elementsof the universe of B.We have the following general theorem:7.12: TheoremLet C be a complexity class containing at least L. If K is in C and inco-C then LqK is a C{computable logic, i.e. every formula in the extendedlogic LqK has a model checker of complexity C.This theorem requires some tedious checking, but is not surprising.However, ifC does not contain L, serious problems arise. A similar theoremcan be formulated for semi{regular logics by only requiring that K be inC and restricting the quanti�er to positive occurrences.7.3 Computable Predicate TransformersIn some cases it is convenient to work with predicate transformers insteadof generalized quanti�ers. A predicate transformer is a mapping from re-lations to relations. A guiding example is the transitive closure of a binaryrelation. Other examples are computable queries an Database theory.We are interested in extensions of computable logics L by predicatetransformers. This generalizes the construction introduced in [Imm87].To set up our framework we need some machinery.7.13: De�nitionLet � be a vocabulary without function symbols or constant symbols that
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30(ii) K is in PH i� K is de�nable by a formula of Second Order Logic.In our terminology, Second Order Logic captures PH.7.2 Computable Quanti�ersWe now de�ne computable quanti�ers. Our presentation follows the de�-nition of the Lindstr�om Quanti�ers in [Ebb85] and combines the theory ofgeneralized quanti�ers with the idea of computable queries of [CH80].Let C be a complexity class. Let � be a vocabulary without functionor constant symbols, K be a set of natural �{structures in C. Further, letL be some regular C{computable logic. We de�ne LqK , the extension of Lwith a C{computable quanti�er, as follows :7.9: De�nition (Syntax)(i) All the rules of forming formulas in L are rules of forming formulasin LqK .(ii) Let �1; �2; :::; �n be formulas in LqK satisfying the following condi-tion:For each relation symbol Ri of arity ai in �, there is a formula �iwith ai free variables which do not appear in any other of the � and formulas.Then the following is a formula in LqK :Qx1x2:::xm(�1; �2; :::; �n)where m is the sum of the arities ai. We refer to such a formula asa formula of form (*).(iii) The formula (*) above is considered as the syntax of a quanti�er ofsize 1. A quanti�er of size k is then de�ned as the formula we getby replacing each of the variables xi with a vector of variables ofsize k (each element of each such vector can appear only in a singleformula among the �'s and  's). The syntax of LqK is then extendedto include quanti�ers of any size.7.10: De�nition (Semantics)The meaning function MLqK (�;A; z) is de�ned by extending the meaningfunction ML of L as follows:Let � be a �{formula of the form (*), let A be a �{structure and let z be aassignment of the free variables in � to elements in A, the universe of A.Now �;A and z de�ne a �{structure A� as follows:
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29Now the analogue of Lindstr�om's theorem over �nite structures wouldbe the identi�cation of semi{regular logics L which capture complexityclasses C for suitable C.For the case where C equals the recursively enumerable (recursive) setsof natural structures such a characterization is easy. Let Lr:e: be like �rstorder logic but with in�nite disjunctions over r.e. sets of formulas and suchthat in�nite disjunctions appear only under an even number of negations.Similarly, Let Lrec be like �rst order logic but with in�nite disjunctionsover recursive sets of formulas, iteratively applied a �nite number of timeswithout restrictions. Clearly Lr:e: and Lrec are semi{regular logics satisfy-ing the above requirements. On the other hand any �nite structure can bedescribed up to isomorphisms by a �rst order sentence, therefore any r.e.set of �nite structures can be described by a simple r.e. disjunction of such�rst order sentences. In other words:7.6: Theorem(i) Lr:e: is a r.e.{computable semi{regular logic which captures the r.e.sets of structures.(ii) Lrec is a recursive semi{regular logic which captures the recursive setsof structures.A di�erent characterization of r.e.{computable logics was given in the fun-damental paper of Chandra and Harel [CH80], in terms of computablequeries and Pascal{like programs.As already mentioned in section 3.7, Fagin noted that7.7: Theorem (Fagin)Let K be a class of natural structures. Then K is in NP i� K is de�nableby an existential formula of Second Order Logic.In our terminology the set of existential formulas of Second Order Logicform a semi{regular logic which captures NP. This is a special case of amore general theorem due to J. Lynch, generalizing a result of Stockmeyer[Lyn82], noting that NP is just one level in the polynomial hierarchy PH.Recall, cf. [GJ79], that PH is the union of the complexity classes �nP and�nP , where �1P is NP and �1P is Co{NP. Furthermore, a �n{formula(�n{formula) of Second Order Logic is a formula in prenex normal formstarting with existential (universal) second order quanti�ers and havingn� 1 alternations of second order quanti�ers.7.8: Theorem (Lynch{Stockmeyer)Let K be a class of natural structures.(i) K is in �nP (�nP ) i� K is de�nable by an �n{formula (�n{formula)of Second Order Logic.
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287.1 Computable LogicsWhen we restrict ourselves to �nite �{structures �rst order logic is notanymore characterizable in a way similar to Lindstr�om's theorem. Wehave to allow for extensions of �rst order logic. We still require that logicsshould be regular. We shall require that a formula is satis�able i� it has a�nite model. However, we cannot require that the set of valid sentences isrecursively enumerable because of the following classical result [Tra50]:7.1: Theorem (Trakhtenbrot)There is a �nite vocabulary � such that the set of �rst order �{sentenceswhich is true in all �nite �{structures is not recursively enumerable.On the other hand we have the following observation.7.2: De�nition(i) We say that a �nite structure of cardinality n is natural, if its uni-verse consists of the set f0; 1; : : :; n� 1g.(ii) We say that a �nite structure of cardinality n is naturally ordered,if it is natural and its vocabulary contains a binary relation symbolwhose interpretation is the customary linear order on f0; 1; : : : ; n�1g.7.3: TheoremLet � be a �nite vocabulary and � be a �rst order �{sentence. Then the setof �nite natural �{structures A such that A j= � is recursively enumerable.In fact, it is even in L.These considerations lead us to the following development.7.4: De�nitionLet C be a complexity class. A semi{regular logic L is C{computable if allof the following hold:(i) For every �nite vocabulary � the set of �{formulas is computable inC.(ii) The meaning function is invariant under isomorphisms. In otherwords, for every � , every two �{isomorphic �{structures A;B andevery �{formula � we have A j= � i� B j= �.(iii) Let � be a �nite vocabulary and � be a �{sentence. Then � has amodel{checker of complexity less than C, i.e. the set of �nite natural�{structures A such that A j= � is recognizable in C.7.5: De�nitionLet L be a semi{regular computable logic and C be a complexity class. Wesay that L captures C if for every class of naturally ordered �{strucures Kwe have that K is in C i� K is de�nable in by a �{formula of L.
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276.7: CorollaryLet T be a �nite set formulas over �field consistent with either ACF0 orRCF . Then T does not admit elimination of quanti�ers.In other words, elimination of quanti�ers is a rather rare phenomenon.6.3 Elementary GeometryThe most important application of the method of elimination of quanti-�ers is in Elementary Geometry. Elementary Geometry is, by Descartes'reduction, identi�ed with the normed vector spaces Rn. Statements aboutcon�gurations of points in Rn can be expressed in �rst order logic over thevocabulary �field using the axioms of RCF . Tarski's theorems, therefore,show that any such statement is decidable, using the method of eliminationof quanti�ers. Although the general method is doubly exponential in timeand simply exponential space, special cases have been singled out withlower complexity. Applications of this method to Robotics are surveyedand discussed in [SSH87], applications to automated theorem proving in[Cho88].6.4 Other Theories with Elimination of Quanti�ersWe brie
y list in this section other cases where the method of eliminationof quanti�ers was applied successfully.� Dense orders, linear orders, well-orderings, monadic theory of linearorder, [Ros82]� Applications to temporal logic, such as Kamp's theorem, [GPSS80,Flu91].� Boolean algebras, Abelian groups and modules and similar theoriesalso with generalized quanti�ers, [BSTW85].7 Computable Logics over Finite StructuresThe presentation of the material in this section has been developed bythe author. It was never published but used in lectures since 1984. I amindebted to Y. Pnueli who once worked out the notes of my lectures on thesubject.In this section we shall frequently speak of complexity classes C such asL (LogSpace), NL (Non{deterministic LogSpace), P (Polynomial Time),NP (Non{deterministic Polynomial Time), ...., recursive, recursively enu-merable. We do not give an abstract de�nition, and its enough to havethese and similar examples in mind.



www.manaraa.com

26(iii) � satis�es the submodel condition, if for every model B of � andevery submodel A of B, and every formula� = 9x1; : : : ; xnB(x1; : : : ; xnBwith B quanti�erfree, we have that B j= � i� A j= �.6.3: Theorem (Shoen�eld)If � satis�es both the isomorphism condition and the submodel condition,then � admits elimination of quanti�ers.To prove Tarski's theorem one has to verify the isomorphism and the sub-model condition, which again uses particulars of the theory of algebraicallyclosed �elds.Tarski proved the same theorem also for real closed �elds. A �field-structure is a real closed �eld if it satis�es the �eld axioms and the followingtwo axioms:Square roots exist: 9y(y � y = x) _ 9y(y � y = �1 � x)Polynomials of odd degree have roots: For every term t(x) of theform y2n+1 � x2n+1 + y2n � x2n + : : :+ y1 � x+ y0 there is an x suchthat t(x) = 0.We denote the axioms of real closed �elds by RCF . Real closed �elds arealways of characteristic 0. Moreover, one can de�ne an order relation x < yby the formula 9z(y+(�1�x) = z � z), which makes a real closed �eld intoan ordered �eld.6.4: Theorem (Quanti�er elimination for real closed �elds)RCF admits quanti�er elimination. Furthermore, given � the equivalentquanti�erfree formula  can be computed in double exponential time andsimple exponential space.6.5: CorollaryThe �rst order theories ACF0 and RCF are decidable in double exponentialtime and simple exponential space.The complexity result are due to Collins and Ben{Or, Kozen and Reif,cf. [SSH87].The question arises whether other �rst order theories of �elds are decid-able as well. Tarski conjectured and Ziegler [Zie82] proved the following6.6: Theorem (Ziegler)Let T be a �nite set formulas over �field consistent with either ACF0 orRCF . Then every subset T 0 of T is undecidable. In particular, the �rstorder theory of �elds is undecidable.
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25A �eld is of characteristic n if additionally1 + : : :+ 1| {z }n = 0:A �eld is algebraically closed if for every polynomial (�field-term) t(x) =yn � xn + : : :+ y1 � x + y0 with one free variable x and coe�cients yi wehave 9x t(x) = 0 _ 8y; z t(y) = t(z):Note that n is the degree of the polynomial provided that yn 6= 0. We de-note the axioms of algebraically closed �elds of characteristic 0 by ACF0.The �eld of complex numbers is an algebraically closed �eld of character-istic 0. The class of algebraically closed �elds was structurally analyzed bySteinitz ([Ste10]), and his analysis served as a paradigm for algebra andmodel theory. Classical algebraic geometry is the study of algebraic vari-eties over the complex numbers. An algebraic variety is a set of n-tuples ofcomplex numbers all of which satisfying some set of polynomial equations.In logic we replace equalities by arbitrary �rst order formulas, includingquanti�ers and inequalities. Tarski now proved the following:6.1: Theorem (Tarski, Elimination of quanti�ers for algebraicallyclosed �elds)Let �(x1; : : : ; xn) be a �field-formula. Then there is a quanti�erfree �field-formula  (x1; : : : ; xn) with the same free variables such that ACF0 j= �$ . Furthermore,  is computable from � in double exponential time andsimple exponential space.The complexity result is due to J. Heintz [Hei83] and there severalre�nements. For an up to date discussion, cf. [Ier89]. The proof usesthe �eld axioms to bring terms into polynomial normal form and thenreduces the problem to the case where � is an existential formula withno disjunctions. The last step exploits that every polynomial has a zero.This proof does not invite for generalizations. However, Shoen�eld [Sho67]found the model theoretic contents of Tarski's theorem.6.2: De�nitionLet � be a set of �rst order formulas over some vocabulary � .(i) � admits elimination of quanti�ers if for every � -formula.�(x1; : : : ; xn) there is a quanti�erfree � -formula  (x1; : : : ; xn) withthe same free variables such that � j= �$  .(ii) � satis�es the isomorphism condition, if for every two models A andB of � and every isomorphism g of a substructure of A and a sub-structure of B there is an extension of g which is an isomorphism ofa submodel of A and a submodel of B.
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24for a given function term g(x). If there is such a function term the prob-lem also requires to �nd it. Here the function terms are built from onevariable x and the natural numbers by addition, subtraction, multiplica-tion, division, the formation of exponentials and logarithms to basis e andthe taking of n-th roots. The cumulative knowledge and expertise fromLeibniz and Newton till 1969 have led to Risch's theorem [Ris69], whichcompletely solves the problem. [Ros72] gives an elementary exposition. Thesolution is much more complicated than the solution of the correspondingproblem for Algebraic Equations, i.e. whether zeros of polynomials withinteger coe�cients can represented by terms in the coe�cients built fromthe natural numbers by addition, subtraction, multiplication, division andthe formation of n-th roots. The latter problem was solved completely byGalois and the solution of the problem of Integration in Finite Terms is agrandiose completion of Galois' methods. Attempts of generalizing Galoistheory to arbitrary structures were initiated by E.Engeler [Eng81]. This isa very promising and challenging program, which combines model theoryand algorithmics, but which remains beyond the scope of this chapter.Elementary Geometry is the geometry of Ruler and Compass in the Eu-clidean Plane and its generalization to the n-dimensional Euclidean Space.In contrast to the above problems, whose solutions are all based on thecumulative e�ort of generations of mathematicians, Elementary Geometrycan be mechanized (and even implemented) based on rather little mathe-matical knowledge. The method which works here, however, is not basedon a generally applicable method, like logical deduction, but on a methodwhose scope is limited and which has been completely characterized: Themethod of Elimination of Quanti�ers. This section is exclusively dedicatedto this method. A good text book introduction may be found in [KK67].6.2 Tarski's TheoremTarski studied the �rst order theories of �elds, in particular algebraicallyclosed �elds and real closed �elds. Let � field = f0; 1;�1;+; �g where0; 1;�1 are constant symbols and +; � are binary function symbols. A �eldis a structure over the vocabulary � field which satis�es the �eld axioms,where free variables are quanti�ed universally:Commutativity: x+ y = y + x, x � y = y � x;Associativity: (x+ y) + z = x+ (y + z), (x � y) � z = x � (y � z);Neutral elements: x+ 0 = x, x � 1 = x, 1 6= 0;Distributivity: x � (y + z) = (x � y) + (x � z);Inverse elements: x+ (�1 � x) = 0, x 6= 0! 9y(x � y = 1).
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23or the Fermat equation xn + yn = znwhere the variables range over the integers and the problem is to char-acterize the set of its solution quantitatively (empty, �nite, in�nite) orqualitatively (by another such equation holding between the values of thevariables which form a solution). More precisely, a Diophantine Equationis of the form Term = 0where term are built from variables and natural numbers by addition,subtraction, multiplication, division and exponentiation. Concerning theabove two equations it is conjectured that Catalan's equation has only onesolution (x = u = 3; y = z = 2) and that Fermat's equation has nonefor 3 � n. The solutions for n � 2 have been completely characterized.Both conjectures are still open, but in the last �fteen years Tijdeman,based on results of A. Baker [Bak75], has proved that Catalan's equationhas only �nitely many solutions and Faltings proved that for every 3 � nFermat's equation has only �nitely many solutions (cf. also [Bak84]). In1900 D.Hilbert asked whether there is one general algorithm which decideswhether a given Diophantine equation has a solution (Hilbert's Tenth Prob-lem). The cumulative e�orts of Davis, Putnam, Julia Robinson and Mati-jaseviĉ �nally showed in 1970 that no such algorithm exists [Mat70]. Onthe other hand the state of the art seems to suggest that if we restrict theproblem to Diophantine equations in two variables, then all the successfulmethods known so far exhaust all the cases, which have been distinguishedand, therefore such an algorithm might exists [Bak84].A much simpler class of problems is the class of Arithmetical Identities.An Arithmetical Identity is an equation of the formTerm1 = Term2such as (a+ b)2 = a2 + 2ab+ b2:Here the terms are formed from variables and natural numbers by additionand multiplication only and the identity holds if it holds for all values thevariables can assume. This problem has been mechanized completely. Itssolution basically states that the methods you have (supposedly) learnedin High School are complete. An excellent discussion of the arithmeticalidentities may be found in [Hen77].Integration in Finite Terms is the problem whether there is a functionterm f(x) such that f(x) = Z g(x)
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22(i) B0 is an initial segment of B and(ii) B0 j= PA1+ "f is not total".This theorem is a substantial improvement on [KM87] where a similar resultis proven for some special combinatorial functions.6 Elimination of Quanti�ersIn this section we discuss a model theoretic method useful in ComputerAided Mathematics. We �rst discuss quite in detail the knowledge neededfor turning mathematical practice into recordable and automatically repro-ducible experience. After all, the computer is a kind of a phonograph orrather epistograph, who will replay recorded procedures. If there is nothingto record, no programming technique can overcome the void.6.1 Computer Aided Theorem Proving in ClassicalMathematicsWhat we call here classical mathematics comprises Number Theory, Dif-ferential and Integral Calculus and Elementary Geometry. In each of these�elds we state precisely a class of problems and discuss the prospects ofmechanization and implementation of theorem proving. The point we wishto make here is that success or failure very much depend on a thorough un-derstanding of particular features of the class of problems, and that, super�-cially speaking, minor variations may change the situation radically. Sincevery often advocates of the imminent breakthrough in Arti�cial Intelligenceargue that mathematical Expert Systems like MACSYMA, REDUCE, CA-LEY, MAPLE, MATHEMATICA, etc. prove their point, we would, on thecontrary, argue, that, upon closer analysis, these systems rather prove thepoint of Natural Ingenuity. More precisely, they show how the collectiveexperience of generations of mathematicians, having reached a deep under-standing of the subject, allows the mechanization of their knowledge, andthat the invocation of Arti�cial Intelligence, at least in these cases, onlyadds confusion to an otherwise clearly understandable situation.Number Theory was called by Gauss the Queen of Mathematics. It hasmany facets and recently number theoretic results have increasingly foundapplications in Computer Science. But the true purpose of Number Theorywas always to test the depth of our mathematical understanding. Theoldest branch of Number Theory is the theory of Diophantine Equations.Challenging examples are the Catalan equationxy � zu = 1
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21Wainer hierarchy. The Wainer hierarchy is an extension to in�nite count-able ordinal indices of the more familiar Ackermann hierarchy of functions:F1(n) = 2nFk+1(n) = F (n)k (n)where F (n) denotes the n0th iterate of F . The famous Ackermann Functionis F! - quite low in this hierarchy.5.4: De�nition(i) We say that a function f dominates a function g if for all largeenough n`s, g(n) < f(n).Note that for every � < �, F� dominates F�. It is also worthwhile torecall that Ackermann Function, F!, dominates all primitive recur-sive functions.(ii) �0 is the �rst ordinal � satisfying !� = �. (The exponentiation hereis ordinal exponentiation and �0 turns out to be a countable ordinal -the limit of the sequence !; !!; !!! ; : : :).(iii) A function f is provably recursive in a formal theory T if there is analgorithm A that computes f for which T proves (using some �xedrecursive coding of algorithms) that A halts on every input.5.5: Theorem (Wainer)(i) For every ordinal � < �0, the �`th function in the Wainer hierarchy,F�, is provably recursive in PA.(ii) If a total recursive function f : N ! N is provably recursive in PAthen it is dominated by some F� in fF� : � < �0g.Furthermore, Fortune, Leivant and O`Donnel [FLO83] prove that the setof functions that are provably recursive in PA equals that set of functionsthat can be computed in (deterministic) time dominated by some F� infF� : � < �0g. Let N be the standard model of Peano Arithmetic. LetPA1 be the �rst order theory consisting of the �rst order Peano Axiomstogether with all the �1 formulas true inN . A formula is �1 is if it is of theform 8x� where all the quanti�ers in � are bounded. The model theoreticstatement which shows the existence of functions not provably recursive inPA1 is now the following theorem [BDD91].5.6: Theorem (S. Ben{David and M.Dvir)Let f : N!N be a recursive function which is not dominated by any F�for � < �0. Then every non{standard model B elementary equivalent to Nhas a submodel B0 such that
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20A technical and philosophical discussion of such theorems may be found in[HMvS85]. A presentation of this theorem and related results accessible tocomputer scientists may be found in [Gal91].5.2 Non{Provability in Complexity TheoryThe following variation of the above theorems is due to S. Ben{David[BDH91]:5.2: Theorem (S. Ben{David)There is a language (sets of words recognizable by Turing machines) LPHsuch that(i) LPH is in Co{NP;(ii) LPH is not context free, but(iii) it is not provable in Peano Arithmetic that LPH is not regular.Recently, S. Ben{David has analyzed these results further and relatedthem to discuss the prospect of P 6= NP not being provable in some for-malized system such as Peano Arithmetic or fragments of Second OrderArithmetic [BDH91]. The key notion here are functions extremely close topolynomials where extremely close depends on the growth rate of functionsnot provably total in the formal system in question. His theorem states thefollowing:5.3: Theorem (S. Ben{David)If P 6= NP is not provable in some fragment of second order Arithmetic Sthen every problem P in NP can be solved by an algorithm with run timeupper bound S{extremely close to a polynomial.5.3 Model Theory of Fast Growing FunctionsThe underlying theme of these theorems are fast growing functions. Wereview now some basic facts from the proof theory of Arithmetic. Ourexposition is taken from [BDH91]. We refer the reader to [Smo80, Smo83]for an elaborated and truly enjoyable discussion of this topic. The basicidea goes back to Kreisel [Kre52]. For every recursive formal theory whichis sound for Arithmetic there exist total recursive functions such that thetheory cannot prove their totality. Such functions can be characterized bytheir rate of growth.Wainer [Wai70] supplies a useful measuring rod for the rate of growthof recursive functions (from natural numbers to natural numbers) - the
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19of Abstract Datatypes [MM84] extracting the model theoretic content of[GTWW77]. The latter was based on ideas from Category Theory andUniversal Algebra. A more general discussion may be found in [Mak84].Clearly, neither the closure under substructures nor under products has anyexplanatory power per se in these contexts. It would be more satisfactory,if the formation of products and the closure under substructures could bereplaced by some activity stemming from handling databases. This wasachieved with moderately satisfactory results in [Mak81, MV86].The predominant rôle Horn formulas play in Logic Programming can beexplained syntactically by the similarity of Horn formulas to deterministicrules or instructions. Semantically, the situation is similar to Abstract DataTypes in as much as one thinks of a unique minimal interpretation. Anexact model theoretic analysis of Horn formulas in Logic Programming wasproposed in [Mak87]. Its relevance for Negation by Failure was discussed inShepherdson's [She84, She85, She88]. The exact formulationof this analysisis unfortunately not possible in this survey. An excellent exposition ofspecial properties of Horn formulas is [Hod92]. Formulas preserved underrelativization play a vital rôle in relational database theory, especially inconnection with safe queries, cf. [Ull82, TS88, MV86]. Horn formulaspreserved under intersections were analyzed in [Mak87]. Finally, formulaswith monotone predicates can be characterized as formulas with positiveoccurrence of the predicate and play an important rôle in the theory ofcomputable �xed points and related topics [Mos74]. The use of preservationtheorems in Database Theory will be discussed in my chapter [Mak92a].5 Fast Growing Functions5.1 Non{Provability Results in Second Order Arith-meticIt is questionable whether the model theoretic proof of the Paris-Harrington3.6 theorem really captures the essence of the matter completely. Theoriginal proof has a proof theoretic 
avour and for various generalizationof this theorem no purely model theoretic proof is known. A prominentexample is Friedman's theorem:5.1: Theorem (H. Friedman)There are programs (number theoretic functions) which(i) always terminate (are total) but(ii) such a termination proof does not exist within the formalization ofvarious fragments of second order Arithmetic.
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18 � Relativization� Intersection of models� Monotone predicatesand many more. All these preservation theorems were inspired by analyz-ing the constructions used by the working algebraist. They always exploitthe fact that in�nite structures are part of our discourse. In fact, mostpreservation theorems fail, if restricted to �nite models. One exceptionwas found by Gurevich and Shelah. cf. [Gur90].4.1 Horn FormulasBoth, in Relational Database Theory and Logic Programming, �rst orderformulas form the syntactic background of the �eld. In both �elds it wasobserved that certain syntactically de�ned classes formulas play a specialrôle. For a detailed discussion of �rst order logic's rôle in database theoryone may consult [Var88, Kan90] and the corresponding chapter in thishandbook [Mak92a] The most prominent such class of formulas are calledUniversal Horn formulas. They also play a certain rôle in the Speci�cationof Abstract Data Types.4.1: De�nition (Horn formulas)(i) A quanti�erfree Horn formula is a formula of the formP1 \ : : :\ Pk ! P0where all the Pi; i � k are atomic formulas.(ii) A Universal Horn formula is a formula of the form 8x1; : : : ; xm�which � a quanti�er free Horn formula.The classical theorem of model theory gives the following characteriza-tion of Universal Horn formulas.4.2: Theorem (Mal'cev)Let K be a class of �{structures which are exactly the models of a set of �rstorder �{formulas �. Then K is closed under substructures and productsi� � is equivalent to a set Universal Horn formulas.It is now tempting to �nd to use this characterization of Universal Hornformulas in order to explain their special properties in terms of Databasesand Logic Programming. Fagin has done this in [Fag82] for the case ofdatabases. Mahr and Makowsky have done this for the case of Speci�cation
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17as having the universe f0; 1; : : :; n � 1g. Let S� (n) be the number of � -structures of size n. Recall that I(�; n) is the number of di�erent structuresof size n satisfying �. Let P (n; �) be the fraction of I(�; n) and S� (n).3.16: Theorem (0{1-Law of First Order Logic)For every � without function symbols and every �rst order � -formula � thelimit limn!1P (n; �)is well de�ned and is either 0 or 1.3.17: De�nition (Almost true formulas)A First Order Formula � is almost true if limn!1 P (n; �) = 1.In contrast to First Order Validity over �nite structures, which is unde-cidable (cf. Trakhtenbrot's theorem 7.1), the set of �rst order sentences truein almost all structures is decidable. In fact, Grandjean proved [Gra83]:3.18: Theorem (Grandjean)Assume that � has no function symbols. The problem of deciding, whethera �rst order �{formula � almost true, is P{Space complete.0{1 Laws were investigated also for extensions of First Order Logic. Fora further discussion of similar theorems the reader should consult [Com87,Fag90] and the literature quoted therein. Striking applications of 0{1 Lawsin Computer Science are still missing. They may emerge in the context ofAverage Case Complexity Theory [Gur91], Graph Algorithms [GS87] andthe like.4 Preservation TheoremsPreservation theorems of First Order Logic characterize syntactic classes offormulas in terms of their semantic properties. In section 4 we have giventhe simplest example, the substructure theorem. It's proof is a simplebut ingenious use of the compactness theorem. This speci�c applicationof compactness was termed the Method of Diagrams and may be foundin every introduction to model theory. Alternative proofs of preservationtheorems were given using ultraproducts [CK90].The classical preservation theorems characterize formulas which are pre-served under� Unions of chains� Homomorphisms� Products and reduced products
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16richer semantic structures, found rich applications in theoretical computerscience. Engeler was the �rst to observe that in�nitary logic can serve asa framework to formulate the input/output behaviour of programs. Hisapproach was considered awkward. V. Pratt D.Kozen used a Kripke-likesemantics for his approach to axiomatize the input/output behaviour ofprograms, which was �nally called `Dynamic Logic'. This was receivedenthusiastically. However, it was soon observed that the two approacheswere equivalent. Burstall suggested modal and Pnueli temporal logic forthe axiomatic description of program behaviour. Kripke-structures arealso abundant in foundational research in AI, especially in the theory ofknowledge.3.9 The Hidden MethodOne model theoretic tool of central importance does usually not appearin the statement of theorems, but mostly in their proofs. This is the`back-and-forth' characterization of n-equivalent structures, i.e. structuressatisfying the same sentences of quanti�er rank n. This characterizationoriginated in the early work of R. Fra��ss�e and was popularized in an in
uen-tial paper by A. Ehrenfeucht. Ehrenfeucht also generalized the method tomonadic second order logic, and further generalizations for in�nitary logicand logics with generalized quanti�ers and predicate transformers were de-veloped subsequently, cf. [BF85]. We shall devote section 8 to an extensivediscussion of this method, which call Ehrenfeucht-Fra��ss�e games. Here weonly list some of its application.Originally, Ehrenfeucht-Fra��ss�e games were used to prove that certainconcepts are not de�nable by �rst order formulas even if restricted to �nitestructures. Among such concepts we �nd the connectivity and planarity ofgraphs. The deepest and most surprising application of Ehrenfeucht-Fra��ss�egames occurs in the proof of Lindstr�om's theorem. A close analysis of thisproof also shows that Beth's theorem can be proven using this method, aswell as various preservation theorems. Ehrenfeucht's generalization of themethod to monadic second order logic can be used to give a model theoreticproof of B�uchi's theorem. It was used in [FR79] to establish lower andupper bounds for the complexity of decidable theories such as PresburgerArithmetic and the theory of two successors functions. And �nally, it canbe also used to prove the 0{1 law for �rst order logic over �nite structures,due independently to R. Fagin and Glebski��, Kogan, Ligon'ki�� and Talanov.3.10 0{1 LawsTo state the 0{1 Theorem, let � be a vocabulary without function symbolsand let � be a �rst order � -formula. We think of a structure of size n
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15This theorem was followed by intense investigations of model theories ofparticular logics and the evolution of a framework for `abstract model the-ory'. The fruits of these investigations were collected in the monumentalvolume [BF85].In 1965 S. Kripke initiated the model theoretic study of logics di�er-ent from classical �rst order or propositional logic, such as intuitionisticlogics, modal logics and temporal logics. His main idea was to look at,say propositional modal or temporal logic, as a special case of �rst orderlogic. A Kripke-structure is a �rst order structure with a binary rela-tion for accessibility to possible states (worlds in the case of modal logic,points in time in the case of temporal logic). Propositions then are unarypredicates in Kripke-structures. The modal and temporal operators (neces-sarily/possibly, always/sometimes) now become �rst order de�nable. Theaxioms of modal or temporal logic shape the accessibility relation. In thisway Kripke was able to state precisely the semantics of modal logic andprove, for the �rst time, completeness theorems. To illustrate this let usstate here case of the modal system T , which captures the unproblematicaspects of `necessity'. The formula 2� is read as `necessarily �'. The sys-tem T contains all substitutions of propositional tautologies, the axioms2(� !  ) ! (2� ! 2 ) and 2� ! �, and the two deduction rulesModus Ponens and from � infer 2�.3.14: Theorem (Kripke)A modal formula � is provable in T i� � is true in all Kripke-structureswith a re
exive accessibility relation.We speak of temporal logic when the accessibility relation is a partialorder, in the most natural case a discrete linear order. The formula 2� isnow read as `always �'. It is natural to ask whether the introduction of onetemporal operator (or for that matter, modal operator) su�ces, or whetherthere are many hitherto undiscovered temporal operators. Obviously wehave operators corresponding to `next'. `previously' `always in the future',`always in the past', `� until  ' and `� since  '. We note that all theseoperators are �rst order de�nable over linearly ordered Kripke-structures.H. Kamp now proved the following remarkable3.15: Theorem (Kamp)Let TO(p1; : : : ; pn) be an n-ary temporal operator which is �rst order de-�nable over discrete, complete linear orderings. Then TO(p1; : : : ; pn) isde�nable from the operators `next', `previously', `until' and `since'.The theorems of Kripke and Kamp are two prime examples of modeltheoretic theorems in non{standard logic. The underlying techniques, how-ever, are applicable in a much wider context and have not yet been sys-tematically developed. Good surveys are [Bur84, BS84, RS23].Both types of generalizations of �rst order logic, more formulas and
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143.11: Theorem (B�uchi 1960)A set of words is regular i� it is de�nable by an existential formula ofmonadic second order logic.Trakhtenbrot [Tra61] independently found a similar theorem.Fagin studied the �nite spectrum and was led to the following theorem:3.12: Theorem (Fagin)A set of �nite structures is in NP i� it is de�nable by an existential (full)second order sentence.Let � be a �rst order formula over a vocabulary � . We note thatSpec(�) can be viewed as the set of �nite models of � over the emptyvocabulary, where � is obtained from � by existentially quantifying allthe predicate symbols of � . So Fagin's theorem generalizes the both thespectrum problem as well as B�uchi's theorem.Immerman characterized similarly sets of ordered �nite structures inL; NL; P. We shall discuss the interplay between model theory andcomplexity theory in section 7.3.8 Beyond First Order LogicIn this introduction we already have come across features which go beyond�rst order logic. We have tacitly introduced quanti�cation over relationsin B�uchi's theorem, and we have mentioned the semantic restriction to �-nite structures. These mark the two independent directions generalizationsmight take: More sentences vs. more complex models.The model theoretic study of richer logics over � -structures in the usualsense was initiated in the late 50ies independently by A. Tarski and his stu-dents, and E.Engeler for in�nite �rst order formulas, and by A. Mostowskifor generalized quanti�ers. The book [BF85] contains an excellent bibliog-raphy and historic account. From a naive model theoretic point of viewit is natural to ask whether for those generalized logics the compactnesstheorem and the L�owenheim-Skolem theorem are still true. For in�niteformulas compactness fails trivially. It was also observed that in all theexamples of generalized quanti�ers studied one of the two usually failed.In 1966 P. Lindstr�om published a paper which was hardly noticed till 1970.In it the following fundamental result was stated and proved:3.13: Theorem (Lindstr�om)Let L be a regular logic over � -structures which both satis�es the com-pactness theorem and the L�owenheim-Skolem theorem. Then L is, up tosemantic equivalence, �rst order logic.A logic is regular if it is closed under boolean operations, quanti�cation,relativization and does not distinguish between isomorphic � -structures.
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13countable atomless boolean algebras. Steinitz showed that any two un-countable algebraic closed �elds of characteristic zero of the same cardi-nality are isomorphic. So Vaught's theorem quickly establishes that thesetheories are complete and therefore decidable.3.7 Spectrum ProblemsThe study of categoricity of �rst order theories was the driving force be-hind the deepest results of model theory. Ryll-Nardzewski, Svenonius andEngeler independently characterized !-categorical theories, and Morleyproved the following generalization of Steinitz' theorem:3.9: Theorem (Morley)If � is categorical for some uncountable � then � is categorical for everyuncountable �.If � is not categorical, then it is natural to look at the following: Let �be a set of formulas and denote by I(�; �) the number of non-isomorphicmodels of cardinality �. I(�; �) is called the spectrum of �. The studyof I(�; �) for in�nite � was initiated by Morley and Vaught (cf. [CK90]).A complete analysis of the in�nite case dominated the research e�orts inmodel theory and culminated in Shelah's theorem [She90]:3.10: Theorem (Shelah's Spectrum Theorem)For uncountable � I(�; �) is non-decreasing in � and, in fact either(i) I(�; �) = 2� or(ii) I(�; !�) < BETH!�(card(�)).The in�nite spectrum and its rami�cations are the core of a highly sophis-ticated development in model theory called stability theory. Although itis of extreme mathematical depth and beauty I can so far see no fruitfulinterplay between stability theory and computer science.Instead of I(�; �) for �nite �, we shall look at the �nite cardinal spec-trum Spec(�) of �nite sets of formulas �. Spec(�) is the set of naturalnumbers n such that there is a �nite model of � of cardinality n. Thestudy of Spec(�) was initiated by Scholz. For the historic remarks cf.[Fag90]). In contrast to stability theory, the study of the �nite cardinalspectrum Spec(�) led to very interesting interactions between model the-ory and complexity theory, through the pioneering work of B�uchi, Faginand Immerman (cf. [B�60, Fag74, Imm87].B�uchi studied the interplay between Monadic Second Order Logic andautomata theory. He looked at words over a �nite alphabet as �nite linearlyordered structures with unary predicates. Recall that a set of words isregular if it is recognizable by a �nite automaton. His theorem states:
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12against the Hydra, where the Hydra grows n new heads after the nth blow itreceives. The underlying theme of this theorem are fast growing functions.We return to this topic in section 5.3.6 Complete Theories and Elimination of Quanti�ersAnother line of early investigations was the study of complete theories. Aset � of formulas (over a �xed vocabulary � ) is complete if for every formula� either � j= � or � j= :�. The original interest for complete theories stemsfrom questions of decidability. A set of formulas � is decidable if its set ofconsequences is recursive.3.7: TheoremIf � is recursive and complete then � is decidable.Proofs of completeness were often obtained using the method of elimina-tion of quanti�ers. Tarski used these ideas to show that there is a decisionprocedure for Elementary Geometry, which he identi�es with the �rst ordertheory of real closed �elds. This theorem led recently to interesting applica-tions in robotics. But the method of elimination of quanti�ers has not yetreceived the attention it deserves among researchers in automated theoremproving. The state of art in automated theorem proving for elementarygeometry is best discussed in [Cho88, SSH87].Another way of proving completeness of �rst order theories is basedon a simple but ingenious observation due to Vaught, which shows thepower of model theoretic reasoning. Let � be a complete theory. If � has amodelA which is �nite, then it is unique up to isomorphism. IfA is in�nite,then by the L�owenheim-SkolemTheorem, � has models of arbitrary in�nitecardinalities. Now, if all models of � of in�nite cardinality � are isomorphic,we say that � is �-categorical. Note that if A and B are isomorphic thenthey satisfy the same �rst order sentences.3.8: Theorem (Vaught)If � is �-categorical for some in�nite � and � has no �nite models, then� is complete.Proof. Assume, for contradiction, that there is � such that neither � j= �nor � j= :�. As � has no �nite models, using the L�owenheim-SkolemTheorem we can �nd models A and B such that A j= � [ f�g and B j=� [ f:�g, both of cardinality �. But then A is isomorphic to B, whichcontradicts the fact that A j= � and B j= :�.Classical mathematical results establish categoricity of a few natural �rstorder theories. Hausdor� and Cantor showed that any two countable denselinear orderings are isomorphic, and a similar argument shows the same for
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11�. By an ingenious application of the compactness theorem he proved theconverse of this observation:3.5: Theorem (Substructure Theorem)A set � of �rst order formulas is preserved under substructures i� � isequivalent to some set of universal formulas.The Substructure Theorem set a pattern for further investigationswhose results are called preservation theorems. It led to similar syntacticcharacterizations for formulas preserved under unions of chains, homomor-phisms, products, intersections and other algebraic operations. There arealso some surprising interrelationships between a generalization of Beth'stheorem and preservation theorems for a wide class of operations betweenstructures, cf. [Mak85]. Some of these preservation theorems have vari-ations and interpretations which are of importance in database theory[Mak84] and the foundations of logic programming, [Mak87]. Questionsrelated to such preservation theorems also occur naturally in the compo-sitional approach to model checking for various temporal logics [Eme90].The latter is a subdiscipline of program veri�cation. It still remains anopen avenue of research to �nd the preservation theorems which will beuseful for model checking, in particular those preservation theorems whichwill re
ect the compositionality of programs.3.5 Disappointing UltraproductsWith these early investigations centering around the compactness theoremand the preservation theorems an alternative proof of the compactnesstheorem was discovered using ultraproducts. The method of ultraproductsalso lead to alternative proofs of preservation theorems and dominatedresearch in model theory throughout the 60ies (cf. [CK90]), but it hadalmost no impact on theoretical computer science. Although Kripke andKochen [KK82] used bounded ultraproducts to give a model theoretic proofof the Paris-Harrington Theorem, Kanamori and McAloon [KM87] gave amodel theoretic proof of this theorem without bounded ultraproducts. Inthe language of theoretical computer science this theorem can be stated asfollows:3.6: Theorem (Paris, Harrington)There are programs (number theoretic functions) which(i) always terminate (are total) but(ii) such a termination proof does not exist within the formalization ofPeano arithmetic.A very picturesque version of this theorem is due to Kirby and Paris [KP82].The function described there is a winning strategy for the �ght of Hercules
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10of mathematics, as it led to `non{standard' models of the Natural Num-bers, the Real Numbers and of Set Theory. However, A. Robinson realizedthat those non-standard models had their own usefulness for developinggenuine �rst order mathematics. For theoretical computer science, non-standard models of number theory and set theory only recently started toplay a rôle. We shall not discuss their use in this paper, but refer the readerto [ANS82, MS89, Pas90].On the positive side we have Beth's theorem on implicit de�nitions andits various generalizations. Those theorems were mostly proven �rst bysyntactic methods, but the model theoretic proofs found later make thosetheorems independent of the particular formalism of �rst order logic. Let� be a set of �rst order formulas over some vocabulary � , and let P be ann-ary relation symbol not in � . We say that a formula �(P ) over � [ fPgde�nes P implicitly using �, if in each model A of � there is at most oneinterpretation of P . We say that the predicate implicitly de�ned by � using� has an explicit de�nition of there is a formula �(x1; x2; : : : ; xn) over �such that� [ �(P ) j= 8x1; x2; : : : ; xn(�(x1; x2; : : : ; xn)$ P (x1; x2; : : : ; xn)):Now Beth's theorem can be stated as follows:3.4: Theorem (Beth)Let � be a set of �rst order formulas and let �(P ) be an implicit de�nitionof P using �. Then there is an explicit de�nition of P using �.Beth's theorem is trivially true for second order logic, and false for�rst order logic when restricted to �nite structures. In the latter case,implicit de�nitions allow us to de�ne classes of structures recognizable inNP \ co{NP, whereas �rst order formulas de�ne classes recognizable inL. We shall discuss the consequences of this observation in section 7. Beth'stheorem is mainly appealing as a closure property of a logic. There aresurprisingly few genuine applications of Beth's theorem and its relatives.One of them, in the axiomatic treatment of speci�cation theory, is relevantto theoretical computer science (cf. [MS92]). More recently Kolaitis hasstudied implicit de�nability on �nite structures and related it to issues incomplexity theory, [Kol90].3.4 Preservation TheoremsAnother line of explorations of the compactness theorem was initiated byTarski. He observed that universal �rst order formulas are preserved undersubstructures. In other words, if � is a set of �rst order formulas in prenexnormal form with universal quanti�ers only and A j= � and B � A is asubstructure of A then B j= �. The same is true for any �1 equivalent to
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9given formula holds in the given structure. Any mathematically provenstatement about the meaning function is a model theoretic theorem.The �rst result of mathematical logic which could be called model the-oretic was the famous L�owenheim-Skolem Theorem:3.1: Theorem (L�owenheim-Skolem Theorem)Let � be a set of formulas of �rst order logic such that there is an in�niteA with A j= �. Then there are models B of arbitrary in�nite cardinalities� � card(� ) + ! such that B j= �.The most basic model theoretic theorem is the compactness theoremfor �rst order logic. We say that a set � of formulas is satis�able if thereis a structure A such that A j= �. The compactness theorem now statesthat:3.2: Theorem (Compactness Theorem)A set � of �rst order formulas is satis�able i� every �nite subset of � issatis�able.It follows from G�odel's completeness theorem for countable � and wasproven for arbitrary � byMal'cev. A model theoretic proof of the complete-ness theorem was given independently by Hasenj�ager, Henkin and Hintikkain 1949. This proof, most widely known as Henkin's method, was instru-mental in shaping the further developments of logic and model theory.The completeness theorem usually refers to some speci�c deductionmethod and states that a �{formula� is derivable froma set of �{formulas�i� � is a semantical consequence of �. The notion of semantical consequenceis model theoretic. It says that for every �{structure A and every assign-ment z such that M (�;A; z) = 1 we also have M (�;A; z) = 1. A purelymodel theoretic statement which captures the essence of the completenesstheorem without reference to the particular deduction is the following:3.3: TheoremFor every recursive enumerable set � of �{formulas the set �{formulas �which are semantical consequences of � is recursive enumerable.3.3 De�nability QuestionsThe next ten years of evolving model theory were marked by explorationsof the compactness theorem and the L�owenheim-Skolem Theorem. The�rst of this explorations concerns de�nability questions, both negative andpositive results.On the negative side we have that many important mathematical con-cepts cannot be captured by �rst order formulas. Among them are theconcept of well-orderings, connectivity of binary relations and Cauchy com-pleteness of linear orders. This was �rst perceived as blow to the foundation



www.manaraa.com

83 Model Theory and Computer ScienceAs we discuss here applications of model theory to computer science wehave to clarify what we intend both by model theory and theoretical com-puter science.3.1 Computer ScienceConcerning Computer Science we take a pragmatic approach. Any mathe-matically modelled situation which captures any issue arising in the deal-ings with computers is a possible topic for computer science. This includeshardware, software, data modelling, interfaces and more. Some of themore classical �elds of theoretical computer science have already maturedinto well established subdisciplines. Among them we �nd computabilitytheory, algorithmics, complexity theory, database theory, data and pro-gram speci�cation, program veri�cation and testing etc. However, we feelthat a certain confusion in the de�nitions of these �elds is obfuscatingthe issues involved. It very much depends whether our point of view ismethod{oriented or application{oriented. Computability and complexitytheory deal with the clari�cation of our notion of what is computable. Thisrepresents a clear case of a well de�ned method{oriented subdiscipline ofcomputer science and the foundations of mathematics. Database theoryon the other hand is a �eld which grew from an application{oriented ap-proach. From a method{oriented point of view, database theory tends tofall apart into sub�elds, such as �nite model theory, operating systems, �lesystems, user interfaces and algorithmics, where each of these transcendthe boundaries of the database applications. Scienti�cally speaking, thead hoc collection of methods bound together by a vaguely de�ned commonapplication is unsatisfactory. It is justi�ed only for didactic purposes suchas training application{oriented engineers. But such training is detrimen-tal to a deeper understanding of the craft and the science and leads tochaotic duplicity (and multiplicity) of research and research subcultureseach disguised in its own terminology and provincialisms.In this paper we try to exhibit a method and a scienti�c framework,model theory, and discuss typical problems whose discussion in this frame-work is bene�cial to our understanding.3.2 The Birth of Model TheoryModel theory deals with the mathematical study of the satisfaction relationor its characteristic function, the meaning function. For a speci�c syntacticsystem which we call logic, the meaning function singles out the pairs of�rst order structures and formulas which we interpret as asserting that the
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7explicitness and technicalities of the �eld of application.2.3 LogicsThe most prominent logic is First Order Logic. Although we argued that�{structures are su�ciently general to model all situations which can betreated mathematically, First Order Logic has a limited expressive power.This means that a description in First Order Logic of a situation will allowwhat are called non{standard models. In other words, it will have modelsof that description which do not capture all the intended features.Other logics we shall consider are Second Order Logic (allowing quan-ti�cation over subsets and relations without making them into objects ofthe model), Monadic Second Order Logic (allowing quanti�cation only oversubsets), in�nitary logics (allowing in�nite conjunctions and disjunctions)and logics with generalized quanti�ers. The latter will be discussed in detailin section 7.A logic itself again can be modelled within set theory. It consists of afamily of �{formulas Fm(� ) with associated meaning functions M� sub-ject to several conditions. The most fundamental among them is the Iso-morphism Condition which asserts that isomorphic �{structures cannot bedistinguished by �{formulas. The other conditions assert that the mostbasic operations such as conjunction, disjunction, negation, relativizationand quanti�cation over elements are well de�ned. Such logics are calledregular logics. If negation is omitted we call the logics semi{regular. Themodel theory of such logics has been extensively studied, cf. [BF85].For applications in computer science the relevant logics have two addi-tional features: The set of �{formulas Fm� is recursive for �nite � and themeaning functions M� are absolute for set theory, i.e., they do not dependon the particular model of Zermelo-Fr�ankel set theory we are working in.If we additionally require that the tautologies of such a logic are recur-sively enumerable, we call such a logic a Leibniz Logic. It now follows fromwork of Lindstr�om and Barwise that every Leibniz Logic is in some precisesense equivalent to First Order Logic, cf. [BF85]. In other words, a properextension of First Order Logic is either not regular or not absolute or itstautologies are not recursively enumerable. If we restrict ourselves to �nitestructures the latter is unavoidable even for First Order Logic, but thenthe satis�able formulas are recursively enumerable. Semi{regular logics on�nite structures where the satis�able formulas are recursively enumerablehave many applications to computer science and are studied in 7.
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6the set of substructures.In the case of graphs the modelling issue is more subtle. It is cus-tomary to describe a graph as a set with an incidence relation. Thusthere is quanti�cation over vertices but not over edges. If we choose toallow quanti�cation over edges we change the notion of structure. To whatextent this matters has been studied by Courcelle in a series of papers[Cou90a, Cou90b]. Finite graphs can also be described by their incidencematrix, which does not �t the notion of a �{structure in a natural way.However, we can consider the incidence matrix itself as a �{structure inmany ways.Logic and model theory take the notion of �{structures for granted.How to choose the particular vocabulary depends on many extra{logicalissues. Discussing some of these issues is a discipline in itself called DataModelling. The issues discussed there come from data processing and databases.First order logic allows quanti�cation only for elements of the under-lying universe. This looks like a severe restriction, as in mathematics wequantify very often also over subsets and more complex objects. However,this restriction only a�ects the modelling issue. In set theory all objectsare sets, and second order arithmetic can be formalized using �rst order�{structures, where the universe consists of points and sets with a unarypredicate distinguishing between them. It is in this sense that the notion of�{structures is as universal as the set theoretic modelling of mathematicalsituations.More surprisingly, �{structures can also capture situations of modaland temporal propositional logic. A propositional variable may be truein some moments of time and false on others. So let the universe of ourdiscourse be time and propositions be unary predicates [Bur84]. This isalmost obvious. In the case of modal logic it needed Kripke's ingenuity tomake use of this idea [BS84]. The universe now is a set, the set of all pos-sible worlds or situations, propositions are again unary predicates, but therelationship between possible worlds is described by an accessibility rela-tion. From here, it is natural to continue and consider several accessibilityrelations (to model for example the distinction between the legally and themorally possible). In the theory of program veri�cation this was used tomodel the behaviour of abstract programs (Dynamic Logic [Har84]). InAI this approach was extended further to model reasoning about knowl-edge [Eme90]. The interested reader will �nd more also in section 3.8 and[Ga92]. For reasons of space we shall not treat these issues much furtherin this chapter.The point we want to emphasize here is that the framework of �{structures is 
exible enough to model everything which can be modelledin mathematics, more precisely in set theory. The choice of vocabulary issometimes di�cult and guided by various issues, including user friendliness,
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5plication, a unary function, called the inverse, and a constant called theunit element. An ordered group is additionally equipped with a binaryrelation, called the order relation. In similar ways we can de�ne �elds,rings or the structure of arithmetic on the natural numbers. In computerscience other data structures are de�ned similarly, such as words, stacks,lists, trees, graphs, Turing machines etc.. A word of length n over thealphabet f0; 1g can be viewed as a set of n elements with a binary relationwhich linearly orders that set and a unary relation, which indicates whichplaces in the word are occupied by the letter 1. A graph is just a set with abinary relation. In each case it is required that the functions, relations andconstants satisfy some interrelating properties which make it into a group(�eld, word, graph, Turing machine etc.).Sometimes, it is more practical to model structures with several under-lying sets, as in the case of vector spaces. These sets form several universesand are called sorts. We then speak of many{sorted structures. A Turingmachine consists of two sets: a set of states and a set of letters; a binaryrelation between states and letters; a unary relation, the set of �nal states;and a constant, the initial state. Many{sorted structures allow us to modelalso concepts which involve sets of sets, such as topologies, families of sub-groups or whatever comes to ones mind. This last statement is not just asloppy way of saying something vague. It really expresses a belief, or ratherexperience, that everything which can be modelled in set theoretic termswith �nitely many basic concepts can be modelled by such structures.In modern terms a structure is a tuple of sets of speci�ed characteristics.The primitive concepts have names and these names form again a set, calledthe vocabulary. A structure then is an interpretation of a vocabulary. Moreprecisely, a (�rst order) vocabulary � is a set of sort symbols, functionsymbols, relation symbols and constant symbols. The function, relationand constant symbols have an arity which speci�es the number and sortsof the arguments and values. The arity is mostly assumed to be �nite. Inthis way we can naturally associate with a vocabulary � the proper classof all �{structures, which we denote by STR(� ).2.2 The Choice of the VocabularyThe notion of a �{structure evolved naturally in mathematics, more pre-cisely in algebra. Groups and �elds are usually described as sets with op-erations, ordered �elds are sets with operations and relations. The choiceof the basic operations is in no way trivial. Should we add the inverseoperation as basic or not ? In the case of arithmetic we have the successorrelation, addition and multiplication. The �rst order theory of arithmetic isundecidable, but if we leave out multiplication, it becomes decidable. Thisis a dramatic change. Subtraction is de�nable by a �rst order formula, soleaving it out or adding it, does not a�ect decidability. But it does a�ect
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4to number theory (Skolem, G�odel) and �nally, of modelling logic within settheory (Tarski, Vaught). The �rst two reductions were motivated by thefundamental questions of the foundations of mathematics, whereas the lat-ter accepts Bourbaki's view that set theory is the foundational frameworkof mathematics. It is this latter approach which forms the background ofmodel theory proper. Let us elaborate this further: We take some NaiveSet Theory for granted and attempt to model all objects of mathematicalstudy within this Set Theory. Without having to bother too much aboutthe choice of set theory we can model the natural numbers, �nite strings,�nite graphs within set theory. We accept the axiom of choice as a fact oflife. With this we can model also most of the concepts of classical algebra(�eld theory, ring theory, group theory, but not necessarily cohomologytheory) within set theory. The natural numbers, �elds, graphs are mathe-matical structures which serve as the prime examples for models of logicaltheories. We usually think of models of a logical theory rather than of asingle model, and the models form usually a proper class (the class of allgroups, rings, etc.). If we restrict ourselves to �nite mathematical struc-tures we can additionally consider recursive sets of models or sets modelsof lower complexity classes (Logarithmic Space or Polynomial Time recog-nizable classes of models). Next we observe that logical theories are justsets of formulas and that formulas can be viewed again as either stringsover some alphabet or as some kind of labeled trees. Most people thinkof formulas as inherently �nite objects, but in�nite formulas (then betterviewed as trees) are easily conceivable. So formulas and sets of formulascan also be modelled in our set theory. If we think of �nite formulas asstrings it makes sense to bring in also concepts of recursion theory andcomplexity theory.The basic relationship between sets of formulas and models is the sat-isfaction relation. We view it here as a ternary relation M (�;A; z), where� is a set of formulas, A is a structure, i.e. a generalized algebra over somevocabulary (similarity type) and z is an assignment function mapping freevariables of the formulas � into elements of the universe of the structureA. If M (�;A; z) holds for every z we simply write A j= � and say that Ais a model of �. The characteristic function of the satisfaction relation isoften called meaning function. The meaning function can also be modelledin set theory.2.1 First Order StructuresIt is customary to model algebraic structures as sets equipped with func-tions and relations. This view has its origins in algebra as understood inthe 19th century. A structure consists of a set, the universe, equipped withsome relations, functions and constant, which model the primitives.A group then is a set equipped with a binary function, called multi-
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3competing) cultural systems which are themselves embedded in host cul-tural systems; that nevertheless the fame and prestige of the protagonistsof science and scienti�c progress do play an important, possibly also coun-terproductive rôle; that cultural stress and cultural lag play a crucial rôlein the evolution of concepts; that periods of turmoil are followed by peri-ods of consolidation after which concepts stabilize; that di�usion betweendi�erent �elds usually will lead to new concepts and accelerated growthof science; that environmental stresses created by the host culture andits subcultures will elicit observable response from the scienti�c culture inquestion; and, �nally, revolutions may occur in the metaphysics, symbolismand methodology of computing science, but not in the core of computingitself. Wilder has developed in [Wil81] a general theory of `Laws' governingthe evolution of mathematics, from which I have adapted the above state-ments. It remains a vast research project to assimilate Wilder's theoryinto our context, but it is an indispensable project if we want to adjust ourexpectation of progress in computing science to realistic hopes. Wilder'swork also sheds some light into the real problems underlying the so called`software crisis': The cultural lag of programming practice behind comput-ing science and the absence of various cultural stresses may account for theabundance of programming paradigms without the evolution of rigorousstandards of conceptual speci�cations.I can only hope that I may contribute my small share to the slow processof bridging that gap and further the logical foundations of computer science.Acknowledgements: I am indebted to many colleagues who encouragedme at several stages to pursue my research of model theoretic methods incomputer science. Among them I would like to mention Erwin Engeler,Eli Shamir, Shimon Even, Vaughan Pratt, Catriel Beeri, Saharon She-lah, David Harel and Yuri Gurevich. I am also indebted to the graduatestudents of my department whose work contributed to my understand-ing. Among them are Ariel Cal�o, Yaniv Bargury, Yachin Pnueli and AvySharel. I would like to thank S. Ben{David who allowed me to include hisunpublished results in section 5 and Y. Pnueli, who helped writing section7. Finally I would like to thank D. Gabbay for inviting me to write thischapter and for his insisting that I give him this version for publication.2 The Set Theoretic Modelling of Syntax andSemanticsModel theory is the mathematical (set theoretical) study of the interplaybetween Syntax and Semantics. Historically it has its roots in the variousattempts of reducing �rst mathematics to logic (Frege, Hilbert), then logic
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2 For M.N.Y., who emerged into my lifewhile I was preparing this chapter.1 IntroductionThe purpose of this chapter is to give an account of those aspects of modeltheory which we think are relevant to theoretical computer science. Westart with a general outline of the evolution of model theory, which willserve as an exposition of the major themes. In the subsequent section weshall elaborate some of these themes and put them into the context oftheoretical computer science.We assume the reader is familiar with the basics of First Order Logic,Computability Theory, Complexity Theory and Basic Algebra. Wheneverpossible we shall refer to textbooks and monographs rather than the orig-inal papers. Only material not treated in standard texts will be quotedin the original (or by referring to a subsequent paper which contains theresult in the most readable form).This chapter is not meant to be an exhaustive scholarly survey of modeltheoretic methods in theoretical computer science. It is more of a personalguided tour into a well mapped but still largely unexplored landscape. Ithas de�nite autobiographical traits. No author can completely escape that.It proposes to some extent a unifying view which ultimately should leadto the disappearance of the personal touch. However, for that to happenmore research and reinterpretation of classical results is needed. Logic andmodel theory are relatively old disciplines which enjoy renewed interest.They can serve as one explanatory paradigm for foundational problems intheoretical computer science. But the gap between the traditional logi-cians and mathematicians and the working computer scientists is �rst ofall cultural in the sense of R. Wilder's [Wil81]. His studies deserve specialattention especially when one has in mind the evolution and developmentof programming languages, operating systems, user interfaces and otherparadigms of computing, but also in addressing foundational questions, cf.[Mak88].Wilder's studies clearly show several phenomena: that the evolutionof concepts to widely accepted norms of practice takes much longer andneeds more than just the availability of such concepts; that the evolutionof concepts is not due to individuals but is embedded in one (or several
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Model Theory and Computer Science:An AppetizerJ.A. MakowskyDepartment of Computer ScienceTechnion - Israel Institute of Technology, Haifa, IsraelJanuary 27, 1995To appear as chapter I.6 in volume I of the `Handbook of Logic inComputer Science' (S. Abramsky, D.M. Gabbay and T.S.E. Maibaum eds),Oxford University Press 1992. AbstractWe �rst review the main developments of model the-ory as it evolved as a branch of mathematical logic andexamine which developments have a potential for researchin theoretical computer science. We then discuss thoseaspects of model theory which we think have the greatestimpact on theoretical computer science in further detail.Our presentation is not topic oriented but method ori-ented.
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