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Marcja. We then worked together on the model theory of modal logic and
wrote [MM77] Some time ago you could still find street vendors in winter
selling castagnaccio which was baked on an open fire. The ingredients are
simple: Chestnut flour, olive oil, sugar, raisins and pinenuts. The original
receipe does not appear in Artusi’s classical cooking book, but 1t does ap-
pear in the very enjoyable and nostalgic book by E. Servi-Machlin [SM81].
Incidentally, she is the sister of the Italian logician M. Servi who did some
work on the model theory of categories with finite products [Ser71]. As it
1s difficult to find chestnut flour outside of Tuscany, let me give a modified
version of the dish.

Take one can of canned, unsweetend chestnut purée. Add a third of
the can of olive oil and half the can of sugar and mix in a food processor
to a homogeneous paste. Add a third of the can of regular flour and keep
mixing till smooth.

Spread the paste on a flat cooking sheet, not more than a small finger
thick. It is advisable to rub the sheet with margarine or olive oil before
spreading the paste. Now stick the pinenuts and raisins into the paste at
your liking. Bake medium hot for about 40 minutes (till the paste hardens)
but be careful not to burn it.

Let cool and break into pieces. Best served with coffee (expresso) and
Grappa (di Brunello).
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8.13: Corollary
HALFCLIQUE and HAM are not definable in DTCY TC! ATC?,

the First Order Logics augmented by the predicate transformers

DTC, TC, ATC of size 1.

This gives us a quick example for interesting families of pairs of ordered
finite structures which are n-isomorphic in TC?.

8.14: Corollary

There are functions f,g : N — N such that for every n € N f(n) # g(n)
and the words af(p/ ) and of b9 gre n-isomorphic (equivalent) in
TC".

In [dR87] it is only proved that HAM is not definable in existential
Monadic Second Order Logic.

8.5 The Games and Pumping Lemmas

The various games described in this section are used to show non-—
definability results. Corollary 8.14 is a model theoretic version of the well
known Pumping-Lemma for regular languages. Theorem 8.11 is a model
theoretic version of a Pumping—Lemma for L. Similar Pumping-Lemmas
can be formulated for other complexity classes C, provided C is captured
by some logic, for which there are suitable games. It remains a challenging
open problem, how to exploit this observation. Ressayre has done a first
step into this direction [Res88, Res].

9 C(Conclusions

We, that is if the reader is still with me, have travelled through the land-
scape of Model Theory coming from the land of Theoretical Computer
Science. There are many places we have not visited, and even where we
did, we did not explore them enough. We have seen some of the land’s
history and cultural system and hinted at its connections with Database
Theory and Logic Programming. We have explored its deeper connections
to Computer Aided Geometry. But we have spent most of our time explor-
ing the model theoretic aspects of the question P # NP and its provability
in formal systems of arithmetic.

The chapter is called an ‘Appetizer’. It should tempt more than one
reader to travel more. If your appetite has been whetted, let me invite you
for a treat:

Castagnaccio: This is a popular sweet in Tuscany of which T have learnt
during my own travels in the land of Model Theory (and Tuscany) from A.
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8.12: Theorem
HALFCLIQUE and HAM are not definable in Monadic Second Order

Logic (with arbitrary alternation of quantifiers) and hence not definable in
DTC! TC! ATC!.

Proof. We present here a new and quick but surprising proof of the above
result, cf. [Mak92b]. Recall that Biichi’s theorem states that a language
L is regular (=recognizable by a finite automaton) iff the set L of words
considered as first order structures with a linear order is definable by a
formula in Monadic Second Order Logic. Note that the proof of Biichi’s
theorem in [Lad77] also uses Ehrenfeucht-Fraissé games.

The proof has several stages:

(i)

(vi)

First we note that the language {a"b"” : n € N} is not regular, cf.
[HU80]. This is usually proved by the Pumping Lemma, which is in
some sense an automata theoretic counterpart of the Ehrenfeucht-
Fraissé games.

Next we use Buchi’s theorem and conclude that the set of words cor-
responding to ¢”b" is not definable in Monadic Second Order Logic.

Note that a complete bipartite graph is Hamiltonian iff both sets have
the same cardinality.

Now assume, for contradiction, that H AM were definable by a 7—
formula ¢ of Monadic Second Order Logic. Let w € {a, b}* be a word.
We define a binary relation Ey, on w by (¢,j) € E, iff i € P, and
j € Py. B, makes w into a complete bipartite graph. F,, 1s definable
by a first order formula 8 over 7 4,4s. Substituting R in ¢ by 6 would
give us a formula in Monadic Second Order Logic which assures that
this graph is Hamiltonian, hence would define the language {a”b™},
a contradiction.

For HALFCLIQU E we proceed similarly. We first note that the lan-
guage M ALF (a) where at least half the letters are a’s, is not regular,
again by the Pumping Lemma. Hence HALF(a) is not definable in
Monadic Second Order Logic.

We now define Ey, by (¢,j) € By iff i € Py or j € P,. E, makes
w into a graph where the a’s form a clique. Using this in the above
argument completes the proof.

Note however, the specific sequence of pairs of ordered graphs G, H,,
which we construct to show this, can be separated by a TCZformula, i.e.

a formula with the predicate transformer 7T'C' of size 2.
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similarly motivated games are introduced for Fixed Point Logic which is,
on ordered structures, of the same expressive power as ATC. However, the
game introduced in [dR87] is only shown to be sound, which suffices for
the non—definability result discussed there.

8.4 More Non—definability Results

We discuss here briefly the case of TC, the other cases being similar, but not
trivially so. The games naturally induce a sequence of equivalence relations
=,T¢ between structures which we call n—isomorphic for TC. In [Cal89)]
Calo proves soundness and completeness of these equivalence relations in
the sense that two structures are n—isomorphic for TC iff they satisfy the
same formulas of quantifier depth n. As all these logics contain predicate
transformers of arbitrary arity &, the logic TC can be viewed as a sequence
of logics TC* with the arity of the predicate transformer not exceeding k.
TC! is the logic with the transitive closure applied only to binary relations
of 1-tuples. Our games also allow to characterize definability in TC*.

In [ITmm87] it is shown that a class of finite ordered structures is defin-
able in these logics iff its recognizability is in certain complexity classes.
In this sense we speak of logics capturing complexity classes and we have
for ordered structures, by abuse of notation, L = DTC, TC = NL and
ATC = P. NP was shown in [Fag74] to capture existential Second Order
Logic. As an application of our work we state a necessary and sufficient
condition for separating the complexity classes L, NL, P and NP respec-
tively which is of pure model theoretic character. In the case of NL # NP
this condition can be stated as follows:

Let HALFCLIQUE be the set of ordered graphs which contain a
clique of half its size. Let HAM be the set of ordered graphs which
contain a hamiltonian path. Note that HALFCLIQUE and HAM are
NP-complete, cf. [GIT79].

8.11: Theorem
NL # NP iff there is a sequence of pairs of ordered graphs G, H, such
that

(i) Go=pTH,, and

(ii) Gon ¢ HALFCLIQUE but H, € HALFCLIQUE.
The same holds for HALFCLIQUE replaced by HAM or any other NP -
complete problem.

The construction of such families of graphs may be very hard and possi-
bly requires probabilistic methods similar to the ones used in [AF90]. The
following result nevertheless sheds some light on the problem.

www.manaraa.com



39

(ii) A and B are n-equivalent iff they satisfy the same formulas of quan-
tifier depth n.

For many applications the following corollary is most useful:

8.9: Corollary

A class of finite T-structures K, T finite and without function symbols, is
definable by a formula ¢ of quantifier depth n iff K s closed under n-
equivalence.

Ehrenfeucht—Fraissé-games can be used to obtain non—definability re-
sults. To prove them we combine theorem 8.8 and proposition 8.6.

8.10: Theorem
The following classes of finite structures are not first order definable:

(i) The class of connected graphs;
(ii) the class of planar graphs;
(iii) the class of hamiltonian graphs;

(iv) the class of finite linear orders with an even number of elements.
For a detailed discussion, cf. [Gai82, AF90].

8.3 Second Order Logic and its Sublogics

Ehrenfeucht—Fraissé-games can be generalized and adapted for various ex-
tensions of first order logics. In the case of Second Order Logic (Monadic
Second Order Logic), one simple adds a new type of moves where the
players choose relations (unary relations). Additionally the winning con-
dition has to be modified correspondingly. For the transitive closure logics
DTC = FOL(DTC), TC = FOL(TC) and ATC = FOL(ATC) in-
troduced in [Imm87] and section 7, such games were explicitly studied in
[Cal89, CM91]. The existence of similar games as introduced in this pa-
per, already follows from successive papers cumulating in [MM85]. There,
they are defined for logics with generalized quantifiers rather than predi-
cate transformers. Recently, a logic equivalent to TC based on generalized
quantifiers only was exhibited in [She91]. However, the explicit use of such
games for the case of predicate transformers stemming from transitive clo-
sure operators was first introduced in [Cal89]. Tt has been motivated by
but is distinctly different from the games introduced in [MZ80]. Tt should
also be noted that our explicit definition of these games is more straight-
forward than their derivation in the framework of abstract model theory

and generalized quantifiers as described in [BF85] and [MMS&5]. In [dR87]
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(i) A is n-equivalent to B iff A is n-isomorphic to B;

(ii) A is n-equivalent to B for every n € N iff A is finitely isomorphic to
B;

(iii) A is co-equivalent to B iff A is partially isomorphic to B.

As an exercice, prove proposition 8.4 both, in the formalism of games
and in the formalism of families of partial isomorphisms.

8.6: Proposition

(i) Let 7 = 0. t-structures then consist of their universe only. Let A
and B two t-structures. A and B are n-equivalent iff either both have
at most n elements and have the same number of elements or both
have at least n elements.

(Find the corresponding statement for linear orders).

(ii) Let 7 have no function symbols. There are for every n two -
structures A and B such that A and B are n-equivalent, A has exactly
n elements and B is infinite.

(iii) Let T have exactly one binary relation symbol. There are for every n
two T-structures A and B such that A and B are n-equivalent, and
A is a connected (planar, hamiltonian) graph and B is not connected
(planar, hamiltonian).

8.2 Completeness of the Game

We are now ready to formulate the connection between First Order Logic
and the winning strategies for the game &7 (A, B).

8.7: Notation

We denote by FOLy »(7) the set of T-formulas with all its variables among
Vi,...,Vp and all its free variables among vii1,...,vn. FOLy, , are the
formulas without free vartables of quantifier depth n.

8.8: Theorem (Ehrenfeucht—Fraissé)
Let 7 be without function symbols and finite. Let A and B be two 7-
structures.

Letay,...,an_y and by,..., by_j be elements of A and B respectively.

(i) Player II has a winning strategy for k more moves in the game
ET(A,B) starting in the position described by ay,...,an—p and
bi,....bo_y tff A and B satisfy the same formulas of FOLy (7),

where the variable viyn, takes the value apqm o7 bypm respectively.
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After this playful definitions we are motivated enough to give a defi-
nition of n-equivalence of 7-structures in terms of partial functions. The
winning strategies for &7 (A, B) will be described by a finite family of non-
empty sets of partial isomorphisms {71, },_, in the following way.

8.2: Definition

Let A and B be two t-strutures. We say that A s finitely isomorphic to
B if and only if there s a famuly {IH}ZOIO of non empty sets of partial
wsomorphism from A to B such that:

constants: for every f € I, and for every constant symbol c € T, I4(c) €

Dom(f).

(1) forth: for every f € I, and for every a € A there is a g € I,
extending f such that a € Dom(g).

(1) back: for every f € I, and for every b € B there is a g € I,
extending f such that b € I'm(g).

The following are two special cases of this definition which are of par-
ticular interest:

8.3: Definition

(i) If I, = I constant for every n € N, we say that A is partially
isomorphic to B.

(ii) If there is only a finite family {1, }7_, of partial isomorphisms with
the back and forth properties, we say that A is n-isomorphic to B.

8.4: Proposition
Let A, B be two T-structures.

(i) If A and B are partially isomorphic then A and B are finitely iso-

morphic.

(ii) (Cantor) If A and B are both countable and partially isomorphic
then A and B are isomorphic.

(iii) If A, B are finite, then A is finitely isomorphic to B if and only if A

15 1somorphic to B.

The relationship between the game and the families of partial isomor-
phisms is given in the following:

8.5: Proposition
Let A and B be two 7-structures.
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o E&7(A, B)isplayed by two players T and II, called spoilerand duplicator
respectively. The game is played for n moves, where n is a natural
number. The ‘board’ of the game consists of two r-structures A and
B with universe A and B respectively. Here we make a restriction on
7 in as much as 7 may not contain any function symbols.

e The moves of the game look as follows:
In the k-th move, player I chooses one of the structures A (or B) and
an element ap € A (b € B) and player IT replies by choosing an
element by, € B (a € A).

o After the n moves they have chosen elements (aq,...,a,) and
(b1,...,by) Player II has won, if the map f(a;) = b;,¢ < nis a
partial isomorphism between the 7-structures A and B.

e We look also at the infinite game £ (A, B) which is defined similarly,
but with the moves numbered n for every n € N.

The interesting case here is when player Il has a winning strategy. To
make this notion precise we need some notational effort. Intuitively, a
winning strategy is a catalogue of moves which lists all possible moves
of the opponent with at least one answer which will guarantee ultimately
that player IT wins. With this informal definition in mind, we proceed now
further:

o Let A and B be two 7-structures. We say that A and B are n-
equivalent (oco-equivalent) and write A =, B, if player II has a win-

ning strategy in the game £7(A, B) (£L (A, B)).

e The relation A =, B between r-structures is indeed an equivalence
relation, 1.e. we have:

(i) A=y A
(i) A=, Biff B=, A, and
(iii) f A=, Band B=, C then A=, C.

8.1: Examples

(i) If A~ B then A=, B for every n € N.

(ii) Let T consist of one binary relation symbol and let G, be the -
structure which, viewed as a graph, is the complete graph on n el-
ements, and let H, be the T-structure which, viewed as a graph, is
the complete bipartite graph on n elements. Analyze for small [, m
and n whether G; =,,, H,,.

www.manaraa.com



35
7.5 Logics Capturing Complexity Classes

The framework developed so far allows us to state a very general theorem
about logics capturing complexity classes. Theorems of this type were
first stated in this form by Immerman [Imm&7], but were preceeded and
motivated by Fagin’s work [Fag74]. We first need a definition.

7.22: Definition

Let K be a class of natural structures which is C—complete for L reductions.
We denote by L(K) the logic obtained from L by adding the quantifiers (or
predicate transformers) associated with K for all sizes k € N. If L is First
Order Logic we write FOL(K) instead of L(K).

7.23: Theorem

Let C be a complexity class which contains L. Let L be a semi—reqular
C—computable logic. Let K be a class of natural structures C—complete for
L-reductions. Then L(K) captures C.

7.24: Corollary (Immerman)

(i) FOL(DTC) captures Logarithmic Space L.
(ii) FOL(TC) captures Nondeterministic Logarithmic Space NL.
(iii) FOL(ATC) captures Polynomial Time P.

Recently, I. Stewart [Ste91a, Ste91b] has taken a similar, but less general
approach to show that

7.25: Corollary (Stewart)
FOLBBCOL) captures Nondeterministic Polynomial Time NP.

These results make the problems L # (?7)NL, P # (?)NP or even
L # (?)NP into problems of definability by computable quantifiers. We
shall see in the next section how to convert them into problems of model
theory.

8 FEhrenfeucht—Fraissé Games

In this section we introduce a very powerful tool with many applications
in the analysis of the expressive power of First Order Logic. The tool is
commonly known under the name Ehrenfeucht-Fraissé Games E] (A, B).

8.1 The Games

Informally the Ehrenfeucht—Fraissé Games are described as follows:
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An analogous definition can be given for predicate transformers instead of
quantifiers.

7.19: Definition

Let K be a class of natural o—structures. Let C C D be complexity classes
and let £ be ¢ C-computable logic. We say that K is D—complete for
L-reductions if

(i) K is in D and

(ii) every class K1 of o1-structures in D is L-reducible to K.

The traditional definition of NP—completeness says that K is NP-
complete iff K is NP—complete for P-reductions. Our definition is model
theoretic counterpart of the more usual computational definition of K being
D—complete for C—reductions. The exact relationship between the two

definitions is given by the following proposition and is proven using theorem
7.12 or theorem 7.17

7.20: Proposition
Let K be a class of natural o—structures. Let C C D be complexity classes
and let L be a C-computable logic.

(i) If K is D—complete for L-reductions then K is D-complete for C—
reductions.

(ii) There is are K’s which are D-complete for C-reductions, but which
are not D—complete for L—reductions.

The following are some examples of such complete classes K, cf.

[Imm87, Imm88, Ste9la, Ste9lb].
7.21: Proposition

(i) (Immerman) DTC is L-complete, TC is NL-complete and ATC
1s P—complete for first order reductions.

(ii) Stewart The class 3COL of three—colourable graphs is NP —-complete
for first order reductions.

Note that DT'C', TC and ATC give rise to computable quantifiers with
constants or, better to predicate transformers, whereas 3C'OL can best be
used as a computable quantifier.
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extended to a unique o' —structure B € J for which R(z(y1), z(y2), ..., 2(4r))
15 true.

7.16: Example

(i) Let o consist of one binary relation symbol R and o/ = o U {S} with
S another binary relation symbol. TC' (DTC') consists of the class of
o’ —structures such that the interpretation of S is the (deterministic)
transitive closure of the interpretation of R. Both can be used to
define predicate transformers of arbitrary size.

(ii) Similarly one can define ATC' for the alternate transitive closure of
a relation over a unary predicate, cf. [Imm87].

7.17: Theorem
Let £ be a C-computable logic. If J s in C and in co-C then Lyy is a
C—computable logic.

A similar theorem can be formulated for semi-regular logics by only re-
quiring that K be in C and restricting the predicate transformer to positive
occurrences.

7.4 L—Reducibility

Immerman and Dahlhaus [Dah82, Dah83, Imm87] independently intro-
duced the notion of classes K of o—structures complete for a complexity
class C by first order reductions. We present here a slight generalization:

7.18: Definition
Let Ky be a class of o1—structures and Ko be a class of oo—structures.

(i) Ka is k— L-reducible to Ky for a natural number k if Ko is definable
by a formula of the form

QkK1(¢1a c a¢n)

where all the ¢’s are L(o2) formulas and QkKl 1s the quantifier de-
fined by Ky of size k.

(ii) Ko is L-reducible to Ky if it is k — L-reducible for some natural
number k.

(iii) If £ is First Order Logic we speak of k—first order reducible. (Immer-
man in [Imm87] considers the case where the ¢’s are even quantifier

free).
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contains at least one relation symbol. Let 0 = o U {R} where R is a
relation symbol of arity r not i o.

(1)

(i)

We say that a o’ —structure A’ is an expansion of a o—structure A, if
they have the same universe and all the relations of o are identical.

Let J be a set of natural structures over o’. J is a predicate trans-
former if for every oc—structure A there is at most one expansion

A elJ.

Let C be a complexity class and J be a predicate transformer. We now
say that J is C—computable if, given a o—structure A and an r-tuple
of elements from the universe, (by,ba,...,b,), the problem whether
R(by,ba, ..., by) is true in A" can be decided in C. (Similarly we define
when J is in co-C).

We define £, 7, the extension of £ with a C—computable predicate trans-
former by the addition of one more formation rule as follows:

7.14:

(1)

(i)

Definition (Syntax)

Let @1, 02, ..., 0n, 1 be formulas in Lp5 such that for each relation
symbol R; of arity a; wn o, there is a formula ¢; with a; free variables
which do not appear in any other of the ¢’s.

Then the following 1s a formula in Lp7 :

lea Lo, ..o, Tm¥Y1, Y2, ..y yT(¢1a ¢2a ceey ¢n)

where the variables xq, xa, ...,y are bound, m is the sum of the a;’s
and the variables y1,yo, ..., Y, are free. We refer to such a formula as
a formula of form (**).

As in the case of quantifiers we can consider the formula above as a
predicate of size 1 and in a similar way define predicates of any size.

Also the meaning function for £, is very similar to the case of quan-
tifiers. We only give the modifications needed.

7.15:

Definition (Semantics)

The meaning function Mg, ,(0,A,z) is defined as the extension of the
meaning function of L in the following way. Let 8 be a T—formula of the
form (**), let A be a T-structure. Let z be an assignment of the free vari-
ables in 0 to elements in A the universe of A and z' be the restriction of z
to the variables different from the y’s.

Then Mg, ,(0,A,z) = 1 iff the o-structure defined by 0, A and 2’ can be

www.manaraa.com



31

(i) Iis universe is the universe A of A (in the case were the quantifier is
of some size k > 1, each element in the defined structure is a vector
of size k of elements from A).

(ii) Let R}* be the i’th relation in o (its arity is a; ). We associate with it
the formula ¢; ,which has a; free variables not appearing in any other
of the formulas of (*) : %j41, ..., %jya,, and define R(b1,bs, ..., b4,) =
Mg . (¢, A, 2"). Where 2’ is a substitution as follows : for each free
vartable x5, from x;41, ..., %j4q, we substitute the element b;,. For
each other free variable in ¢; (which is also free in 0) we substitute
the corresponding element from z.

Now we put Mg (0, A,2) =1iff Ay € K.

7.11: Example

Let o consist of one binary predicate and let 3COL be the class o-
structures, which are 3—colourable graphs. A formula of the form (*) is
true in a T—structure A if ¢1 defines a 3—colourable graph on the universe
of A. The case of the same quantifier but choosing size 2 binds four vari-
ables. A formula of the form (*) is true in a structure B if the 4-ary
relation defined by ¢1 defines a 3-colourable graph on the pairs of elements
of the universe of B.

We have the following general theorem:

7.12: Theorem

Let C be a complexity class containing at least L. If K is in C and in
co-C then L,k 15 a C—computable logic, i.e. every formula in the extended
logic Ly has a model checker of complexity C.

This theorem requires some tedious checking, but is not surprising.
However, if C does not contain L, serious problems arise. A similar theorem
can be formulated for semi-regular logics by only requiring that K be in
C and restricting the quantifier to positive occurrences.

7.3 Computable Predicate Transformers

In some cases it is convenient to work with predicate transformers instead
of generalized quantifiers. A predicate transformer is a mapping from re-
lations to relations. A guiding example is the transitive closure of a binary
relation. Other examples are computable queries an Database theory.
We are interested in extensions of computable logics £ by predicate
transformers. This generalizes the construction introduced in [Imm87].
To set up our framework we need some machinery.

7.13: Definition
Let ¢ be a vocabulary without function symbols or constant symbols that
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(ii) K is in PH iff K is definable by a formula of Second Order Logic.
In our terminology, Second Order Logic captures PH.

7.2 Computable Quantifiers

We now define computable quantifiers. Our presentation follows the defi-
nition of the Lindstrom Quantifiers in [Ebb85] and combines the theory of
generalized quantifiers with the idea of computable queries of [CH80].

Let C be a complexity class. Let o be a vocabulary without function
or constant symbols, K be a set of natural o—structures in C. Further, let
L be some regular C—computable logic. We define L5, the extension of £
with a C—computable quantifier, as follows :

7.9: Definition (Syntax)

(i) All the rules of forming formulas in L are rules of forming formulas
m [,qK.

(ii) Let ¢1,¢o, ..., ¢n be formulas in Lok satisfying the following condi-
tion:
For each relation symbol R; of arity a; in o, there is a formula ¢;
with a; free variables which do not appear in any other of the ¢ and
¥ formulas.
Then the following is a formula in Lo :

Ql‘ll‘z...l‘m(qbl, qf)z, ceny ¢n)

where m 1s the sum of the arities a;. We refer to such a formula as

a formula of form (*).

(iii) The formula (*) above is considered as the syntax of a quantifier of
size 1. A quantifier of size k s then defined as the formula we get
by replacing each of the variables x; with a vector of variables of
size k (each element of each such vector can appear only in a single
formula among the ¢’s and 1’s). The syntax of Lok is then extended
to include quantifiers of any size.

7.10: Definition (Semantics)

The meaning function Mg . (0,A, z) is defined by extending the meaning
function My of L as follows:

Let 6 be a T—formula of the form (*), let A be a T—structure and let z be a
assignment of the free variables in 6 to elements in A, the uniwverse of A.
Now 6, A and z define a o—structure Ay as follows:
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Now the analogue of Lindstrom’s theorem over finite structures would
be the identification of semi-regular logics £ which capture complexity
classes C for suitable C.

For the case where C equals the recursively enumerable (recursive) sets
of natural structures such a characterization is easy. Let L. .. be like first
order logic but with infinite disjunctions over r.e. sets of formulas and such
that infinite disjunctions appear only under an even number of negations.
Similarly, Let £,.. be like first order logic but with infinite disjunctions
over recursive sets of formulas, iteratively applied a finite number of times
without restrictions. Clearly £, . and L,.. are semi-regular logics satisfy-
ing the above requirements. On the other hand any finite structure can be
described up to isomorphisms by a first order sentence, therefore any r.e.
set of finite structures can be described by a simple r.e. disjunction of such
first order sentences. In other words:

7.6: Theorem

(i) Ly is a r.e.—computable semi-regular logic which captures the r.e.
sets of structures.

(ii) Lyec is a recursive semi-regular logic which captures the recursive sets
of structures.

A different characterization of r.e.—computable logics was given in the fun-
damental paper of Chandra and Harel [CH80], in terms of computable
queries and Pascal-like programs.

As already mentioned in section 3.7, Fagin noted that

7.7: Theorem (Fagin)
Let K be a class of natural structures. Then K is in NP off K is definable
by an existential formula of Second Order Logic.

In our terminology the set of existential formulas of Second Order Logic
form a semi-regular logic which captures NP. This is a special case of a
more general theorem due to J. Lynch, generalizing a result of Stockmeyer
[Lyn82], noting that NP is just one level in the polynomial hierarchy PH.
Recall, f. [GIT79], that PH is the union of the complexity classes ¥, F and
HnP, where Elp 1s NP and H1P i1s Co—NP. Furthermore, a X,—formula
(Il,~formula) of Second Order Logic is a formula in prenex normal form
starting with existential (universal) second order quantifiers and having
n — 1 alternations of second order quantifiers.

7.8: Theorem (Lynch—Stockmeyer)
Let K be a class of natural structures.

(i) K isin 2,7 (HnP) iff K is definable by an Xy, —formula (11, ~formula)
of Second Order Logic.
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7.1 Computable Logics

When we restrict ourselves to finite 7—structures first order logic is not
anymore characterizable in a way similar to Lindstrom’s theorem. We
have to allow for extensions of first order logic. We still require that logics
should be regular. We shall require that a formula is satisfiable iff it has a
finite model. However, we cannot require that the set of valid sentences 1s
recursively enumerable because of the following classical result [Trab0]:

7.1: Theorem (Trakhtenbrot)
There is a finite vocabulary 7 such that the set of first order T—sentences
which is true in all finite T—structures is not recursively enumerable.

On the other hand we have the following observation.

7.2: Definition

(i) We say that a finite structure of cardinality n is natural, if its uni-
verse consists of the set {0,1,...,n—1}.

(ii) We say that a finite structure of cardinality n is naturally ordered,
of 1t is natural and its vocabulary contains a binary relation symbol
whose interprelation is the customary linear order on {0,1,... n—1}.

7.3: Theorem

Let T be a finite vocabulary and ¢ be a first order T—sentence. Then the set
of finite natural T—structures A such that A |= ¢ is recursively enumerable.
In fact, it is even in L.

These considerations lead us to the following development.

7.4: Definition
Let C be a complexity class. A semi—regular logic L s C—computable if all
of the following hold:

(i) For every finite vocabulary T the set of T—formulas is computable in

C.

(ii) The meaning function is invariant under isomorphisms. In other
words, for every T, every two T—isomorphic T—structures A, B and

every T—formula ¢ we have A= ¢ iff B |E ¢.

(iii) Let T be a finite vocabulary and ¢ be a T—sentence. Then ¢ has a
model—checker of complexity less than C, t.e. the set of finite natural
T—structures A such that A |= ¢ is recognizable in C.

7.5: Definition

Let L be a semi—regular computable logic and C be a complexity class. We
say that L captures C if for every class of naturally ordered T—strucures K
we have that K s in C iff K is definable in by a 7—formula of L.
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6.7: Corollary
Let T be a finite set formulas over Tpieq consistent with either ACFy or
RCF. Then T does not admit elimination of quantifiers.

In other words, elimination of quantifiers is a rather rare phenomenon.

6.3 Elementary Geometry

The most important application of the method of elimination of quanti-
fiers is in Elementary Geometry. Elementary Geometry is, by Descartes’
reduction, identified with the normed vector spaces R”. Statements about
configurations of points in R™ can be expressed in first order logic over the
vocabulary 7;;.q using the axioms of RC'F'. Tarski’s theorems, therefore,
show that any such statement is decidable, using the method of elimination
of quantifiers. Although the general method is doubly exponential in time
and simply exponential space, special cases have been singled out with
lower complexity. Applications of this method to Robotics are surveyed
and discussed in [SSH87], applications to automated theorem proving in

[Cho88].

6.4 Other Theories with Elimination of Quantifiers

We briefly list in this section other cases where the method of elimination
of quantifiers was applied successfully.

e Dense orders, linear orders, well-orderings, monadic theory of linear

order, [Ros82]

e Applications to temporal logic, such as Kamp’s theorem, [GPSS80,
Flu91].

e Boolean algebras, Abelian groups and modules and similar theories
also with generalized quantifiers, [BSTW85].

7 Computable Logics over Finite Structures

The presentation of the material in this section has been developed by
the author. It was never published but used in lectures since 1984. T am
indebted to Y. Pnueli who once worked out the notes of my lectures on the
subject.

In this section we shall frequently speak of complexity classes C such as
L (LogSpace), NL (Non—deterministic LogSpace), P (Polynomial Time),
NP (Non—deterministic Polynomial Time), ...., recursive, recursively enu-
merable. We do not give an abstract definition, and its enough to have
these and similar examples in mind.
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(iii) X satisfies the submodel condition, if for every model B of ¥ and
every submodel A of B, and every formula

¢=Tc1,..., 2y B(x1,...,2,B

with B quantifierfree, we have that B = ¢ iff A E ¢.

6.3: Theorem (Shoenfield)
If X2 satisfies both the isomorphism condition and the submodel condition,
then X admats elimination of quantifiers.

To prove Tarski’s theorem one has to verify the isomorphism and the sub-
model condition, which again uses particulars of the theory of algebraically
closed fields.

Tarski proved the same theorem also for real closed fields. A 7p;014-
structure 1s a real closed field if it satisfies the field axioms and the following
two axioms:

Square roots exist: y(yxy=2)V Iy(y*y = —1*x)

Polynomials of odd degree have roots: For every term #(z) of the
form yon, 41 * 22t oy, x 22 4+ 4y % 2 + yp there is an z such
that t(x) = 0.

We denote the axioms of real closed fields by RC'F. Real closed fields are
always of characteristic 0. Moreover, one can define an order relation z < y

by the formula 3z(y+ (—1%x) = z*z), which makes a real closed field into
an ordered field.

6.4: Theorem (Quantifier elimination for real closed fields)

RCF admits quantifier elimination. Furthermore, given ¢ the equivalent
quantifierfree formula ¢ can be computed in double exponential time and
simple exponential space.

6.5: Corollary
The first order theories AC'Fy and RCF are decidable in double exponential
time and simple exponential space.

The complexity result are due to Collins and Ben—-Or, Kozen and Reif,
cf. [SSH8T].

The question arises whether other first order theories of fields are decid-
able as well. Tarski conjectured and Ziegler [Zie82] proved the following

6.6: Theorem (Ziegler)

Let T be a finite set formulas over Tyicqq consistent with either ACFy or
RCF. Then every subset T' of T' is undecidable. In particular, the first
order theory of fields is undecidable.
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A field is of characteristic n if additionally

14+...+41=0.
———

n

A field is algebraically closed if for every polynomial (74;cq-term) t(z) =
Yn k@™ 4+ ...+ y1 * & + yo with one free variable x and coefficients y; we
have

Ju t(x) =0V Vy, 2z t(y) = t(2).

Note that n is the degree of the polynomial provided that y, # 0. We de-
note the axioms of algebraically closed fields of characteristic 0 by ACFy.
The field of complex numbers 1s an algebraically closed field of character-
istic 0. The class of algebraically closed fields was structurally analyzed by
Steinitz ([Stel0]), and his analysis served as a paradigm for algebra and
model theory. Classical algebraic geometry is the study of algebraic vari-
eties over the complex numbers. An algebraic variety is a set of n-tuples of
complex numbers all of which satisfying some set of polynomial equations.
In logic we replace equalities by arbitrary first order formulas, including
quantifiers and inequalities. Tarski now proved the following:

6.1: Theorem (Tarski, Elimination of quantifiers for algebraically
closed fields)

Let ¢(z1,...,25) be a Ticra-formula. Then there is a quantifierfree Tyicrq-
formula (xy, ..., xn) with the same free variables such that ACFy = ¢ —
. Furthermore, 1 is computable from ¢ in double exponential time and
simple exponential space.

The complexity result is due to J. Heintz [Hei83] and there several
refinements. For an up to date discussion, cf. [Ier89]. The proof uses
the field axioms to bring terms into polynomial normal form and then
reduces the problem to the case where ¢ is an existential formula with
no disjunctions. The last step exploits that every polynomial has a zero.
This proof does not invite for generalizations. However, Shoenfield [Sho67]
found the model theoretic contents of Tarski’s theorem.

6.2: Definition
Let X be a set of first order formulas over some vocabulary .

(i) ¥ admits elimination of quantifiers if for every 7-formula.
d(r1, ..., 2n) there is a quantifierfree T-formula (x1,... x,) with
the same free variables such that X |= ¢ < 1.

(ii) X satisfies the isomorphism condition, if for every two models A and
B of X and every isomorphism g of a substructure of A and a sub-
structure of B there is an extension of g which is an isomorphism of

a submodel of A and a submodel of B.
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for a given function term g(z). If there is such a function term the prob-
lem also requires to find 1t. Here the function terms are built from one
variable # and the natural numbers by addition, subtraction, multiplica-
tion, division, the formation of exponentials and logarithms to basis e and
the taking of n-th roots. The cumulative knowledge and expertise from
Leibniz and Newton till 1969 have led to Risch’s theorem [Ris69], which
completely solves the problem. [Ros72] gives an elementary exposition. The
solution i1s much more complicated than the solution of the corresponding
problem for Algebraic Equations, i.e. whether zeros of polynomials with
integer coefficients can represented by terms in the coefficients built from
the natural numbers by addition, subtraction, multiplication, division and
the formation of n-th roots. The latter problem was solved completely by
Galois and the solution of the problem of Integration in Finite Terms is a
grandiose completion of Galois’ methods. Attempts of generalizing Galois
theory to arbitrary structures were initiated by E.Engeler [Eng81]. This is
a very promising and challenging program, which combines model theory
and algorithmics, but which remains beyond the scope of this chapter.
Elementary Geometry is the geometry of Ruler and Compass in the Fu-
clidean Plane and its generalization to the n-dimensional Euclidean Space.
In contrast to the above problems, whose solutions are all based on the
cumulative effort of generations of mathematicians, Elementary Geometry
can be mechanized (and even implemented) based on rather little mathe-
matical knowledge. The method which works here, however, is not based
on a generally applicable method, like logical deduction, but on a method
whose scope is limited and which has been completely characterized: The
method of Elimination of Quantifiers. This section is exclusively dedicated
to this method. A good text book introduction may be found in [KK67].

6.2 Tarski’s Theorem

Tarski studied the first order theories of fields, in particular algebraically
closed fields and real closed fields. Let 7/%¢¢ = {0 1,—1,+,*} where
0,1, —1 are constant symbols and +, * are binary function symbols. A field
is a structure over the vocabulary 77%¥'? which satisfies the field axioms,
where free variables are quantified universally:

Commutativity: t+y=y+ 2z, 2*xy=y=*zx;

Associativity: (v +y)+z=ax+ (y+2), (zxy)*z =z * (y=*2z);
Neutral elements: z+ 0=z, 2+ 1=z, 1 # 0;

Distributivity: = * (y + z) = (z x y) + (z * z);

Inverse elements: v+ (—1*xz) =0, 2 #0— Jy(z xy = 1).
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or the Fermat equation
n

2 +y =z
where the variables range over the integers and the problem is to char-
acterize the set of its solution quantitatively (empty, finite, infinite) or
qualitatively (by another such equation holding between the values of the
variables which form a solution). More precisely, a Diophantine Equation
is of the form

Term =0

where term are built from variables and natural numbers by addition,
subtraction, multiplication, division and exponentiation. Concerning the
above two equations it is conjectured that Catalan’s equation has only one
solution (# = v = 3,y = z = 2) and that Fermat’s equation has none
for 3 < n. The solutions for n < 2 have been completely characterized.
Both conjectures are still open, but in the last fifteen years Tijdeman,
based on results of A. Baker [Bak75], has proved that Catalan’s equation
has only finitely many solutions and Faltings proved that for every 3 < n
Fermat’s equation has only finitely many solutions (cf. also [Bak84]). In
1900 D.Hilbert asked whether there is one general algorithm which decides
whether a given Diophantine equation has a solution (Hilbert’s Tenth Prob-
lem). The cumulative efforts of Davis, Putnam, Julia Robinson and Mati-
jasevic finally showed in 1970 that no such algorithm exists [Mat70]. On
the other hand the state of the art seems to suggest that if we restrict the
problem to Diophantine equations in two variables, then all the successful
methods known so far exhaust all the cases, which have been distinguished
and, therefore such an algorithm might exists [Bak84].

A much simpler class of problems is the class of Arithmetical Identities.
An Arithmetical Identity is an equation of the form

Termy = Terms

such as

(a+b)2 = a® + 2ab + b2,

Here the terms are formed from variables and natural numbers by addition
and multiplication only and the identity holds if it holds for all values the
variables can assume. This problem has been mechanized completely. Its
solution basically states that the methods you have (supposedly) learned
in High School are complete. An excellent discussion of the arithmetical
identities may be found in [Hen77].

Integration in Finite Terms is the problem whether there is a function
term f(z) such that
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(i) By is an initial segment of B and
(ii) By = PA1+ 7f is not total”.

This theorem is a substantial improvement on [KM87] where a similar result
1s proven for some special combinatorial functions.

6 Elimination of Quantifiers

In this section we discuss a model theoretic method useful in Computer
Aided Mathematics. We first discuss quite in detail the knowledge needed
for turning mathematical practice into recordable and automatically repro-
ducible experience. After all, the computer is a kind of a phonograph or
rather epistograph, who will replay recorded procedures. If there i1s nothing
to record, no programming technique can overcome the void.

6.1 Computer Aided Theorem Proving in Classical
Mathematics

What we call here classical mathematics comprises Number Theory, Dif-
ferential and Integral Calculus and Elementary Geometry. In each of these
fields we state precisely a class of problems and discuss the prospects of
mechanization and implementation of theorem proving. The point we wish
to make here is that success or failure very much depend on a thorough un-
derstanding of particular features of the class of problems, and that, superfi-
cially speaking, minor variations may change the situation radically. Since
very often advocates of the imminent breakthrough in Artificial Intelligence
argue that mathematical Expert Systems like MACSYMA, REDUCE, CA-
LEY, MAPLE, MATHEMATICA, etc. prove their point, we would, on the
contrary, argue, that, upon closer analysis, these systems rather prove the
point of Natural Ingenuity. More precisely, they show how the collective
experience of generations of mathematicians, having reached a deep under-
standing of the subject, allows the mechanization of their knowledge, and
that the invocation of Artificial Intelligence, at least in these cases, only
adds confusion to an otherwise clearly understandable situation.

Number Theory was called by Gauss the Queen of Mathematics. It has
many facets and recently number theoretic results have increasingly found
applications in Computer Science. But the true purpose of Number Theory
was always to test the depth of our mathematical understanding. The
oldest branch of Number Theory is the theory of Diophantine Equations.
Challenging examples are the Catalan equation

¥y — 24 =1
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Wainer hierarchy. The Wainer hierarchy is an extension to infinite count-
able ordinal indices of the more familiar Ackermann hierarchy of functions:

Fi(n) =2n
Fyga(n) = F(n)

where F(") denotes the n'th iterate of F'. The famous Ackermann Function
1s F, - quite low in this hierarchy.

5.4: Definition

(i) We say that a function f dominates a function g if for all large
enough n's, g(n) < f(n).
Note that for every o < 3, Fg domunates Fy. It ts also worthwhile to
recall that Ackermann Function, F,, dominates all primitive recur-
sive functions.

(ii) € is the first ordinal o satisfying w® = «. (The exponentiation here
1s ordinal exponentiation and ¢y turns out to be a countable ordinal -
the limit of the sequence w,w®, w*" .. ).

(iii) A function f is provably recursive in « formal theory T if there is an
algorithm A that computes [ for which T proves (using some fized
recursive coding of algorithms) that A halts on every input.

5.5: Theorem (Wainer)

(i) For every ordinal o < g, the a‘th function in the Wainer hierarchy,
Py, is provably recursive in PA.

(ii) If a total recursive function f: N — N is provably recursive in PA
then il is dominated by some Fy in {F,: o < €}.

Furthermore, Fortune, Leivant and O‘Donnel [FLO83] prove that the set
of functions that are provably recursive in PA equals that set of functions
that can be computed in (deterministic) time dominated by some Fy in
{Fy : @ < ¢}. Let N be the standard model of Peano Arithmetic. Let
P A; be the first order theory consisting of the first order Peano Axioms
together with all the II; formulas true in A”. A formula is II; is if it is of the
form Vx¢ where all the quantifiers in ¢ are bounded. The model theoretic
statement which shows the existence of functions not provably recursive in
P A; is now the following theorem [BDD91].

5.6: Theorem (S. Ben—David and M.Dvir)

Let f: N — N be a recursive function which is not dominated by any Fy
for a < ¢g. Then every non—standard model B elementary equivalent to N
has a submodel By such that
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A technical and philosophical discussion of such theorems may be found in
[AMvS85]. A presentation of this theorem and related results accessible to
computer scientists may be found in [Gal91].

5.2 Non—Provability in Complexity Theory

The following variation of the above theorems is due to S. Ben-David

[BDHO1]:

5.2: Theorem (S. Ben—David)
There is a language (sets of words recognizable by Turing machines) Lpp
such that

(i) Lpy is in Co-NP;
(ii) Lpm is not context free, but

(iii) it is not provable in Peano Arithmetic that Lpg is not regular.

Recently, S. Ben—-David has analyzed these results further and related
them to discuss the prospect of P # NP not being provable in some for-
malized system such as Peano Arithmetic or fragments of Second Order
Arithmetic [BDH91]. The key notion here are functions extremely close to
polynomaials where extremely close depends on the growth rate of functions
not provably total in the formal system in question. His theorem states the
following:

5.3: Theorem (S. Ben—David)

If P # NP is not provable in some fragment of second order Arithmetic S
then every problem P in NP can be solved by an algorithm with run time
upper bound S—extremely close to a polynomaial.

5.3 Model Theory of Fast Growing Functions

The underlying theme of these theorems are fast growing functions. We
review now some basic facts from the proof theory of Arithmetic. Our
exposition is taken from [BDH91]. We refer the reader to [Smo80, Smo83]
for an elaborated and truly enjoyable discussion of this topic. The basic
idea goes back to Kreisel [Kre52]. For every recursive formal theory which
is sound for Arithmetic there exist total recursive functions such that the
theory cannot prove their totality. Such functions can be characterized by
their rate of growth.

Wainer [Wai70] supplies a useful measuring rod for the rate of growth
of recursive functions (from natural numbers to natural numbers) - the

www.manaraa.com



19

of Abstract Datatypes [MMB84] extracting the model theoretic content of
[GTWWT77]. The latter was based on ideas from Category Theory and
Universal Algebra. A more general discussion may be found in [Mak84].
Clearly, neither the closure under substructures nor under products has any
explanatory power per se in these contexts. It would be more satisfactory,
if the formation of products and the closure under substructures could be
replaced by some activity stemming from handling databases. This was
achieved with moderately satisfactory results in [Mak81, MV86].

The predominant role Horn formulas play in Logic Programming can be
explained syntactically by the similarity of Horn formulas to deterministic
rules or instructions. Semantically, the situation is similar to Abstract Data
Types in as much as one thinks of a unique minimal interpretation. An
exact model theoretic analysis of Horn formulas in Logic Programming was
proposed in [Mak87]. Its relevance for Negation by Failure was discussed in
Shepherdson’s [She84, She85, She88]. The exact formulation of this analysis
is unfortunately not possible in this survey. An excellent exposition of
special properties of Horn formulas is [Hod92]. Formulas preserved under
relativization play a vital role in relational database theory, especially in
connection with safe queries, cf. [UllI82, TS88, MV86]. Horn formulas
preserved under intersections were analyzed in [Mak87]. Finally, formulas
with monotone predicates can be characterized as formulas with positive
occurrence of the predicate and play an important role in the theory of
computable fixed points and related topics [Mos74]. The use of preservation
theorems in Database Theory will be discussed in my chapter [Mak92a].

5 Fast Growing Functions

5.1 Non—Provability Results in Second Order Arith-
metic

It 1s questionable whether the model theoretic proof of the Paris-Harrington
3.6 theorem really captures the essence of the matter completely. The
original proof has a proof theoretic flavour and for various generalization
of this theorem no purely model theoretic proof is known. A prominent
example is Friedman’s theorem:

5.1: Theorem (H. Friedman)
There are programs (number theoretic functions) which

(i) always terminate (are total) but

(ii) such a termination proof does not ewist within the formalization of
various fragments of second order Arithmetic.
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o Relativization
e Intersection of models

e Monotone predicates

and many more. All these preservation theorems were inspired by analyz-
ing the constructions used by the working algebraist. They always exploit
the fact that infinite structures are part of our discourse. In fact, most
preservation theorems fail, if restricted to finite models. One exception

was found by Gurevich and Shelah. cf. [Gur90].

4.1 Horn Formulas

Both, in Relational Database Theory and Logic Programming, first order
formulas form the syntactic background of the field. In both fields it was
observed that certain syntactically defined classes formulas play a special
role. For a detailed discussion of first order logic’s role in database theory
one may consult [Var88, Kan90] and the corresponding chapter in this
handbook [Mak92a] The most prominent such class of formulas are called
Universal Horn formulas. They also play a certain role in the Specification
of Abstract Data Types.

4.1: Definition (Horn formulas)

(i) A quantifierfree Horn formula is a formula of the form
Plﬂ...ﬂpkﬁpo

where all the Py, 1 < k are atomic formulas.

(ii) A Universal Horn formula is a formula of the form VYai,...,2m®
which ® a quantifier free Horn formula.

The classical theorem of model theory gives the following characteriza-
tion of Universal Horn formulas.

4.2: Theorem (Mal’cev)

Let K be a class of T—structures which are exactly the models of a set of first
order T—formulas 2. Then K s closed under substructures and products
iff X 1s equivalent to a set Universal Horn formulas.

It is now tempting to find to use this characterization of Universal Horn
formulas in order to explain their special properties in terms of Databases
and Logic Programming. Fagin has done this in [Fag82] for the case of
databases. Mahr and Makowsky have done this for the case of Specification
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as having the universe {0,1,...,n — 1}. Let S:(n) be the number of -
structures of size n. Recall that I(¢, n) is the number of different structures
of size n satisfying ¢. Let P(n, ¢) be the fraction of I(¢,n) and S, (n).

3.16: Theorem (0—1-Law of First Order Logic)
For every m without function symbols and every first order T-formula ¢ the
limat

lim P(n,¢)

n—oQ

1s well defined and is either 0 or 1.

3.17: Definition (Almost true formulas)
A First Order Formula ¢ is almost true if limy_.o P(n,¢) = 1.

In contrast to First Order Validity over finite structures, which is unde-
cidable (cf. Trakhtenbrot’s theorem 7.1), the set of first order sentences true
in almost all structures is decidable. In fact, Grandjean proved [Gra83]:

3.18: Theorem (Grandjean)
Assume that 7 has no function symbols. The problem of deciding, whether
a first order T—formula ¢ almost true, s P-Space complete.

0-1 Laws were investigated also for extensions of First Order Logic. For
a further discussion of similar theorems the reader should consult [Com87,
Fag90] and the literature quoted therein. Striking applications of 0—1 Laws
in Computer Science are still missing. They may emerge in the context of
Average Case Complexity Theory [Gur91], Graph Algorithms [GS87] and
the like.

4 Preservation Theorems

Preservation theorems of First Order Logic characterize syntactic classes of
formulas in terms of their semantic properties. In section 4 we have given
the simplest example, the substructure theorem. It’s proof is a simple
but ingenious use of the compactness theorem. This specific application
of compactness was termed the Method of Diagrams and may be found
in every introduction to model theory. Alternative proofs of preservation
theorems were given using ultraproducts [CK90].

The classical preservation theorems characterize formulas which are pre-
served under

e Unions of chains
¢ Homomorphisms

e Products and reduced products
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richer semantic structures, found rich applications in theoretical computer
science. Engeler was the first to observe that infinitary logic can serve as
a framework to formulate the input/output behaviour of programs. His
approach was considered awkward. V. Pratt D.Kozen used a Kripke-like
semantics for his approach to axiomatize the input/output behaviour of
programs, which was finally called ‘Dynamic Logic’. This was received
enthusiastically. However, it was soon observed that the two approaches
were equivalent. Burstall suggested modal and Pnueli temporal logic for
the axiomatic description of program behaviour. Kripke-structures are
also abundant in foundational research in Al, especially in the theory of
knowledge.

3.9 The Hidden Method

One model theoretic tool of central importance does usually not appear
in the statement of theorems, but mostly in their proofs. This is the
‘back-and-forth’ characterization of n-equivalent structures, i.e. structures
satisfying the same sentences of quantifier rank n. This characterization
originated in the early work of R. Fraissé and was popularized in an influen-
tial paper by A. Ehrenfeucht. Ehrenfeucht also generalized the method to
monadic second order logic, and further generalizations for infinitary logic
and logics with generalized quantifiers and predicate transformers were de-
veloped subsequently, cf. [BF85]. We shall devote section 8 to an extensive
discussion of this method, which call Ehrenfeucht-Fraissé games. Here we
only list some of its application.

Originally, Ehrenfeucht-Fraissé games were used to prove that certain
concepts are not definable by first order formulas even if restricted to finite
structures. Among such concepts we find the connectivity and planarity of
graphs. The deepest and most surprising application of Ehrenfeucht-Fraissé
games occurs in the proof of Lindstrom’s theorem. A close analysis of this
proof also shows that Beth’s theorem can be proven using this method, as
well as various preservation theorems. Ehrenfeucht’s generalization of the
method to monadic second order logic can be used to give a model theoretic
proof of Biichi’s theorem. It was used in [FR79] to establish lower and
upper bounds for the complexity of decidable theories such as Presburger
Arithmetic and the theory of two successors functions. And finally, it can
be also used to prove the 0-1 law for first order logic over finite structures,
due independently to R. Fagin and Glebskii, Kogan, Ligon’kii and Talanov.

3.10 0-1 Laws

To state the 0—1 Theorem, let 7 be a vocabulary without function symbols
and let ¢ be a first order r-formula. We think of a structure of size n
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This theorem was followed by intense investigations of model theories of
particular logics and the evolution of a framework for ‘abstract model the-
ory’. The fruits of these investigations were collected in the monumental
volume [BF85].

In 1965 S. Kripke initiated the model theoretic study of logics differ-
ent from classical first order or propositional logic, such as intuitionistic
logics, modal logics and temporal logics. His main idea was to look at,
say propositional modal or temporal logic, as a special case of first order
logic. A Kripke-structure is a first order structure with a binary rela-
tion for accessibility to possible states (worlds in the case of modal logic,
points in time in the case of temporal logic). Propositions then are unary
predicates in Kripke-structures. The modal and temporal operators (neces-
sarily /possibly, always/sometimes) now become first order definable. The
axioms of modal or temporal logic shape the accessibility relation. In this
way Kripke was able to state precisely the semantics of modal logic and
prove, for the first time, completeness theorems. To illustrate this let us
state here case of the modal system T', which captures the unproblematic
aspects of ‘necessity’. The formula O¢ i1s read as ‘necessarily ¢’. The sys-
tem 7' contains all substitutions of propositional tautologies, the axioms
O(¢ — ¢) — (O¢ — O¢) and O¢ — ¢, and the two deduction rules
Modus Ponens and from ¢ infer O¢.

3.14: Theorem (Kripke)
A modal formula ¢ is provable in T iff ¢ is true in all Kripke-structures
with a reflexive accessibility relation.

We speak of temporal logic when the accessibility relation is a partial
order, in the most natural case a discrete linear order. The formula O¢ is
now read as ‘always ¢’. It is natural to ask whether the introduction of one
temporal operator (or for that matter, modal operator) suffices, or whether
there are many hitherto undiscovered temporal operators. Obviously we
have operators corresponding to ‘next’. ‘previously’ ‘always in the future’,
‘always in the past’, ‘¢ until ¢/’ and ‘¢ since ¥’. We note that all these
operators are first order definable over linearly ordered Kripke-structures.
H. Kamp now proved the following remarkable

3.15: Theorem (Kamp)
Let TO(p1,...,pn) be an n-ary temporal operator which is first order de-
finable over discrete, complete linear orderings. Then TO(p1,...,pn) is

definable from the operators ‘next’, ‘previously’, ‘until’ and ‘since’.

The theorems of Kripke and Kamp are two prime examples of model
theoretic theorems in non—standard logic. The underlying techniques, how-
ever, are applicable in a much wider context and have not yet been sys-
tematically developed. Good surveys are [Bur84, BS84, RS23].

Both types of generalizations of first order logic, more formulas and
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3.11: Theorem (Biichi 1960)
A set of words s regular iff it is definable by an existential formula of
monadic second order logic.

Trakhtenbrot [Tra61] independently found a similar theorem.
Fagin studied the finite spectrum and was led to the following theorem:

3.12: Theorem (Fagin)
A set of finite structures is in NP iff it is definable by an existential (full)
second order sentence.

Let ¢ be a first order formula over a vocabulary 7. We note that
Spec(¢) can be viewed as the set of finite models of ® over the empty
vocabulary, where @ is obtained from ¢ by existentially quantifying all
the predicate symbols of 7. So Fagin’s theorem generalizes the both the
spectrum problem as well as Buchi’s theorem.

Immerman characterized similarly sets of ordered finite structures in
L, NL, P. We shall discuss the interplay between model theory and
complexity theory in section 7.

3.8 Beyond First Order Logic

In this introduction we already have come across features which go beyond
first order logic. We have tacitly introduced quantification over relations
in Biuchi’s theorem, and we have mentioned the semantic restriction to fi-
nite structures. These mark the two independent directions generalizations
might take: More sentences vs. more complex models.

The model theoretic study of richer logics over 7-structures in the usual
sense was initiated in the late 50ies independently by A. Tarski and his stu-
dents, and E.Engeler for infinite first order formulas, and by A. Mostowski
for generalized quantifiers. The book [BF85] contains an excellent bibliog-
raphy and historic account. From a naive model theoretic point of view
it is natural to ask whether for those generalized logics the compactness
theorem and the Lowenheim-Skolem theorem are still true. For infinite
formulas compactness fails trivially. It was also observed that in all the
examples of generalized quantifiers studied one of the two usually failed.
In 1966 P. Lindstrom published a paper which was hardly noticed till 1970.
In 1t the following fundamental result was stated and proved:

3.13: Theorem (Lindstrom)

Let L be a regular logic over T-structures which both satisfies the com-
pactness theorem and the Lowenheim-Skolem theorem. Then L is, up to
semantic equivalence, first order logic.

A logic is regularif it is closed under boolean operations, quantification,
relativization and does not distinguish between isomorphic 7-structures.
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countable atomless boolean algebras. Steinitz showed that any two un-
countable algebraic closed fields of characteristic zero of the same cardi-
nality are isomorphic. So Vaught’s theorem quickly establishes that these
theories are complete and therefore decidable.

3.7 Spectrum Problems

The study of categoricity of first order theories was the driving force be-
hind the deepest results of model theory. Ryll-Nardzewski, Svenonius and
Engeler independently characterized w-categorical theories, and Morley
proved the following generalization of Steinitz’ theorem:

3.9: Theorem (Morley)
If ¥ 1s categorical for some uncountable k then X is categorical for every
uncountable k.

If X 1s not categorical, then it 1s natural to look at the following: Let X
be a set of formulas and denote by I(X, &) the number of non-isomorphic
models of cardinality x. I(X, k) is called the spectrum of ¥. The study
of I(X, k) for infinite £ was initiated by Morley and Vaught (cf. [CK90]).
A complete analysis of the infinite case dominated the research efforts in
model theory and culminated in Shelah’s theorem [She90]:

3.10: Theorem (Shelah’s Spectrum Theorem)
For uncountable k I(X, k) is non-decreasing in & and, in fact either

(i) I(Z,k) = 2% or
(ii) I(X,ws) < BETH,, (card(«)).

The infinite spectrum and its ramifications are the core of a highly sophis-
ticated development in model theory called stability theory. Although it
1s of extreme mathematical depth and beauty I can so far see no fruitful
interplay between stability theory and computer science.

Instead of I(X, k) for finite x, we shall look at the finite cardinal spec-
trum Spec(X) of finite sets of formulas . Spec(X) is the set of natural
numbers n such that there is a finite model of ¥ of cardinality n. The
study of Spee(X) was initiated by Scholz. For the historic remarks cf.
[Fag90]). In contrast to stability theory, the study of the finite cardinal
spectrum Spec(X) led to very interesting interactions between model the-
ory and complexity theory, through the pioneering work of Buchi, Fagin
and Immerman (cf. [B60, Fag74, Imm87].

Biichi studied the interplay between Monadic Second Order Logic and
automata theory. He looked at words over a finite alphabet as finite linearly
ordered structures with unary predicates. Recall that a set of words is
regular if it 1s recognizable by a finite automaton. His theorem states:
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against the Hydra, where the Hydra grows n new heads after the nth blow it
receives. The underlying theme of this theorem are fast growing functions.
We return to this topic in section 5.

3.6 Complete Theories and Elimination of Quantifiers

Another line of early investigations was the study of complete theories. A
set X of formulas (over a fixed vocabulary 7) is complete if for every formula
¢ either ¥ |= ¢ or ¥ |= —¢. The original interest for complete theories stems
from questions of decidability. A set of formulas ¥ is decidable if 1ts set of
consequences 1is recursive.

3.7: Theorem
If ¥ 1s recursive and complete then X 1s decidable.

Proofs of completeness were often obtained using the method of elimina-
tion of quantifiers. Tarski used these ideas to show that there 1s a decision
procedure for Elementary Geometry, which he identifies with the first order
theory of real closed fields. This theorem led recently to interesting applica-
tions in robotics. But the method of elimination of quantifiers has not yet
received the attention it deserves among researchers in automated theorem
proving. The state of art in automated theorem proving for elementary
geometry is best discussed in [Cho88, SSH&T].

Another way of proving completeness of first order theories is based
on a simple but ingenious observation due to Vaught, which shows the
power of model theoretic reasoning. Let ¥ be a complete theory. If ¥ has a
model A which is finite, then it is unique up to isomorphism. If A is infinite,
then by the Lowenheim-Skolem Theorem, X has models of arbitrary infinite
cardinalities. Now, if all models of ¥ of infinite cardinality x are isomorphic,
we say that X is k-categorical. Note that if A and B are isomorphic then
they satisfy the same first order sentences.

3.8: Theorem (Vaught)
If ¥ 1s k-categorical for some infinite £ and X has no finite models, then
Y. is complete.

Proof. Assume, for contradiction, that there is ¢ such that neither ¥ |= ¢
nor X E —¢. As X has no finite models, using the Lowenheim-Skolem
Theorem we can find models A and B such that A = X U {¢} and B |
¥ U {—=¢}, both of cardinality x. But then A is isomorphic to B, which

contradicts the fact that A = ¢ and B | —¢. i

Classical mathematical results establish categoricity of a few natural first
order theories. Hausdorff and Cantor showed that any two countable dense
linear orderings are isomorphic, and a similar argument shows the same for
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Y. By an ingenious application of the compactness theorem he proved the
converse of this observation:

3.5: Theorem (Substructure Theorem)
A set X of first order formulas is preserved under substructures iff o is
equivalent to some set of universal formulas.

The Substructure Theorem set a pattern for further investigations
whose results are called preservation theorems. It led to similar syntactic
characterizations for formulas preserved under unions of chains, homomor-
phisms, products, intersections and other algebraic operations. There are
also some surprising interrelationships between a generalization of Beth’s
theorem and preservation theorems for a wide class of operations between
structures, cf. [Mak85]. Some of these preservation theorems have vari-
ations and interpretations which are of importance in database theory
[Mak84] and the foundations of logic programming, [Mak87]. Questions
related to such preservation theorems also occur naturally in the compo-
sitional approach to model checking for various temporal logics [Eme90].
The latter is a subdiscipline of program verification. It still remains an
open avenue of research to find the preservation theorems which will be
useful for model checking, in particular those preservation theorems which
will reflect the compositionality of programs.

3.5 Disappointing Ultraproducts

With these early investigations centering around the compactness theorem
and the preservation theorems an alternative proof of the compactness
theorem was discovered using ultraproducts. The method of ultraproducts
also lead to alternative proofs of preservation theorems and dominated
research in model theory throughout the 60ies (cf. [CK90]), but it had
almost no impact on theoretical computer science. Although Kripke and
Kochen [KK82] used bounded ultraproducts to give a model theoretic proof
of the Paris-Harrington Theorem, Kanamori and McAloon [KM87] gave a
model theoretic proof of this theorem without bounded ultraproducts. In
the language of theoretical computer science this theorem can be stated as
follows:

3.6: Theorem (Paris, Harrington)
There are programs (number theoretic functions) which

(i) always terminate (are total) but

(ii) such a termination proof does not ewist within the formalization of
Peano arithmetic.

A very picturesque version of this theorem is due to Kirby and Paris [KP82].
The function described there is a winning strategy for the fight of Hercules
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of mathematics, as it led to ‘non—standard’ models of the Natural Num-
bers, the Real Numbers and of Set Theory. However, A. Robinson realized
that those non-standard models had their own usefulness for developing
genuine first order mathematics. For theoretical computer science, non-
standard models of number theory and set theory only recently started to
play a role. We shall not discuss their use in this paper, but refer the reader
to [ANS82, MS89, Pas90].

On the positive side we have Beth’s theorem on implicit definitions and
its various generalizations. Those theorems were mostly proven first by
syntactic methods, but the model theoretic proofs found later make those
theorems independent of the particular formalism of first order logic. Let
Y. be a set of first order formulas over some vocabulary 7, and let P be an
n-ary relation symbol not in 7. We say that a formula ¢(P) over 7 U {P}
defines P implicitly using ¥, if in each model A of X there is at most one
interpretation of P. We say that the predicate implicitly defined by ¢ using
Y has an ezplicit definition of there is a formula 0(zq, za,...,2,) over T
such that

SUG(P) EVay,@a, .., x0(0(x1,22,...,2,) — Py, 22,...,2,)).

Now Beth’s theorem can be stated as follows:

3.4: Theorem (Beth)
Let X be a set of first order formulas and let $(P) be an implicit definition
of P using Y. Then there is an explicit definition of P using X.

Beth’s theorem is trivially true for second order logic, and false for
first order logic when restricted to finite structures. In the latter case,
implicit definitions allow us to define classes of structures recognizable in
NP N co—NP, whereas first order formulas define classes recognizable in
L. We shall discuss the consequences of this observation in section 7. Beth’s
theorem 1s mainly appealing as a closure property of a logic. There are
surprisingly few genuine applications of Beth’s theorem and its relatives.
One of them, in the axiomatic treatment of specification theory, is relevant
to theoretical computer science (cf. [MS92]). More recently Kolaitis has
studied implicit definability on finite structures and related it to issues in
complexity theory, [Kol90].

3.4 Preservation Theorems

Another line of explorations of the compactness theorem was initiated by
Tarski. He observed that universal first order formulas are preserved under
substructures. In other words, if X is a set of first order formulas in prenex
normal form with universal quantifiers only and A = X and B C A is a
substructure of A then B = X. The same is true for any X equivalent to
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given formula holds in the given structure. Any mathematically proven
statement about the meaning function is a model theoretic theorem.

The first result of mathematical logic which could be called model the-
oretic was the famous Lowenheim-Skolem Theorem:

3.1: Theorem (Léwenheim-Skolem Theorem)

Let Y2 be a set of formulas of first order logic such that there is an infinite
A with A l=X. Then there are models B of arbitrary infinile cardinalities
Kk > card(t) + w such that B = X.

The most basic model theoretic theorem is the compactness theorem
for first order logic. We say that a set X of formulas is satisfiable if there
is a structure A such that A = ¥. The compactness theorem now states
that:

3.2: Theorem (Compactness Theorem)
A set X of first order formulas is satisfiable iff every finite subset of X is
satisfiable.

It follows from Godel’s completeness theorem for countable ¥ and was
proven for arbitrary ¥ by Mal’cev. A model theoretic proof of the complete-
ness theorem was given independently by Hasenjager, Henkin and Hintikka
in 1949. This proof, most widely known as Henkin’s method, was instru-
mental in shaping the further developments of logic and model theory.

The completeness theorem usually refers to some specific deduction
method and states that a T—formula ¢ is derivable from a set of 7—formulas X
iff ¢ 1s a semantical consequence of ¥. The notion of semantical consequence
is model theoretic. It says that for every r—structure A and every assign-
ment z such that M(X, A, z) = 1 we also have M (¢, A, z) = 1. A purely
model theoretic statement which captures the essence of the completeness
theorem without reference to the particular deduction is the following:

3.3: Theorem
For every recursive enumerable set 2 of T—formulas the set T—formulas ¢
which are semantical consequences of X s recursive enumerable.

3.3 Definability Questions

The next ten years of evolving model theory were marked by explorations
of the compactness theorem and the Lowenheim-Skolem Theorem. The
first of this explorations concerns definability questions, both negative and
positive results.

On the negative side we have that many important mathematical con-
cepts cannot be captured by first order formulas. Among them are the
concept of well-orderings, connectivity of binary relations and Cauchy com-
pleteness of linear orders. This was first perceived as blow to the foundation
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3 Model Theory and Computer Science

As we discuss here applications of model theory to computer science we
have to clarify what we intend both by model theory and theoretical com-
puter science.

3.1 Computer Science

Concerning Computer Science we take a pragmatic approach. Any mathe-
matically modelled situation which captures any issue arising in the deal-
ings with computers is a possible topic for computer science. This includes
hardware, software, data modelling, interfaces and more. Some of the
more classical fields of theoretical computer science have already matured
into well established subdisciplines. Among them we find computability
theory, algorithmics, complexity theory, database theory, data and pro-
gram specification, program verification and testing etc. However, we feel
that a certain confusion in the definitions of these fields is obfuscating
the issues involved. It very much depends whether our point of view is
method—oriented or application—-oriented. Computability and complexity
theory deal with the clarification of our notion of what is computable. This
represents a clear case of a well defined method—oriented subdiscipline of
computer science and the foundations of mathematics. Database theory
on the other hand is a field which grew from an application—oriented ap-
proach. From a method-oriented point of view, database theory tends to
fall apart into subfields, such as finite model theory, operating systems, file
systems, user interfaces and algorithmics, where each of these transcend
the boundaries of the database applications. Scientifically speaking, the
ad hoc collection of methods bound together by a vaguely defined common
application is unsatisfactory. It is justified only for didactic purposes such
as training application—oriented engineers. But such training is detrimen-
tal to a deeper understanding of the craft and the science and leads to
chaotic duplicity (and multiplicity) of research and research subcultures
each disguised in its own terminology and provincialisms.

In this paper we try to exhibit a method and a scientific framework,
model theory, and discuss typical problems whose discussion in this frame-
work 1s beneficial to our understanding.

3.2 The Birth of Model Theory

Model theory deals with the mathematical study of the satisfaction relation
or its characteristic function, the meaning function. For a specific syntactic
system which we call logic, the meaning function singles out the pairs of
first order structures and formulas which we interpret as asserting that the
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explicitness and technicalities of the field of application.

2.3 Logics

The most prominent logic is First Order Logic. Although we argued that
T—structures are sufficiently general to model all situations which can be
treated mathematically, First Order Logic has a limited expressive power.
This means that a description in First Order Logic of a situation will allow
what are called non-standard models. In other words, it will have models
of that description which do not capture all the intended features.

Other logics we shall consider are Second Order Logic (allowing quan-
tification over subsets and relations without making them into objects of
the model), Monadic Second Order Logic (allowing quantification only over
subsets), infinitary logics (allowing infinite conjunctions and disjunctions)
and logics with generalized quantifiers. The latter will be discussed in detail
in section 7.

A logic itself again can be modelled within set theory. It consists of a
family of r—formulas F'm(r) with associated meaning functions M, sub-
ject to several conditions. The most fundamental among them is the Iso-
morphism Condition which asserts that isomorphic 7—structures cannot be
distinguished by 7—formulas. The other conditions assert that the most
basic operations such as conjunction, disjunction, negation, relativization
and quantification over elements are well defined. Such logics are called
regular logics. If negation is omitted we call the logics semi-regular. The
model theory of such logics has been extensively studied, cf. [BF85].

For applications in computer science the relevant logics have two addi-
tional features: The set of 7—formulas F'm, 1s recursive for finite 7 and the
meaning functions M, are absolute for set theory, i.e., they do not depend
on the particular model of Zermelo-Frankel set theory we are working in.
If we additionally require that the tautologies of such a logic are recur-
sively enumerable, we call such a logic a Leibniz Logic. It now follows from
work of Lindstrom and Barwise that every Leibniz Logic is in some precise
sense equivalent to First Order Logic, cf. [BF85]. In other words, a proper
extension of First Order Logic is either not regular or not absolute or its
tautologies are not recursively enumerable. If we restrict ourselves to finite
structures the latter is unavoidable even for First Order Logic, but then
the satisfiable formulas are recursively enumerable. Semi-regular logics on
finite structures where the satisfiable formulas are recursively enumerable
have many applications to computer science and are studied in 7.
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the set of substructures.

In the case of graphs the modelling issue 1s more subtle. It is cus-
tomary to describe a graph as a set with an incidence relation. Thus
there is quantification over vertices but not over edges. If we choose to
allow quantification over edges we change the notion of structure. To what
extent this matters has been studied by Courcelle in a series of papers
[Cou90a, Cou90b]. Finite graphs can also be described by their incidence
matrix, which does not fit the notion of a r—structure in a natural way.
However, we can consider the incidence matrix itself as a r7—structure in
many ways.

Logic and model theory take the notion of 7—structures for granted.
How to choose the particular vocabulary depends on many extra—logical
issues. Discussing some of these issues is a discipline in itself called Data
Modelling. The issues discussed there come from data processing and data
bases.

First order logic allows quantification only for elements of the under-
lying universe. This looks like a severe restriction, as in mathematics we
quantify very often also over subsets and more complex objects. However,
this restriction only affects the modelling issue. In set theory all objects
are sets, and second order arithmetic can be formalized using first order
T—structures, where the universe consists of points and sets with a unary
predicate distinguishing between them. It is in this sense that the notion of
T-structures is as universal as the set theoretic modelling of mathematical
situations.

More surprisingly, 7-structures can also capture situations of modal
and temporal propositional logic. A propositional variable may be true
in some moments of time and false on others. So let the universe of our
discourse be time and propositions be unary predicates [Bur84]. This is
almost obvious. In the case of modal logic it needed Kripke’s ingenuity to
make use of this idea [BS84]. The universe now is a set, the set of all pos-
sible worlds or situations, propositions are again unary predicates, but the
relationship between possible worlds is described by an accessibility rela-
tion. From here, it is natural to continue and consider several accessibility
relations (to model for example the distinction between the legally and the
morally possible). In the theory of program verification this was used to
model the behaviour of abstract programs (Dynamic Logic [Har84]). In
AT this approach was extended further to model reasoning about knowl-
edge [Eme90]. The interested reader will find more also in section 3.8 and
[Ga92]. For reasons of space we shall not treat these issues much further
in this chapter.

The point we want to emphasize here is that the framework of 7—
structures 1is flexible enough to model everything which can be modelled
in mathematics, more precisely in set theory. The choice of vocabulary is
sometimes difficult and guided by various issues, including user friendliness,
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plication, a unary function, called the tnverse, and a constant called the
unit element. An ordered group is additionally equipped with a binary
relation, called the order relation. In similar ways we can define fields,
rings or the structure of arithmetic on the natural numbers. In computer
science other data structures are defined similarly, such as words, stacks,
lists, trees, graphs, Turing machines etc.. A word of length n over the
alphabet {0, 1} can be viewed as a set of n elements with a binary relation
which linearly orders that set and a unary relation, which indicates which
places in the word are occupied by the letter 1. A graph is just a set with a
binary relation. In each case it is required that the functions, relations and
constants satisfy some interrelating properties which make it into a group
(field, word, graph, Turing machine etc.).

Sometimes, it is more practical to model structures with several under-
lying sets, as in the case of vector spaces. These sets form several universes
and are called sorts. We then speak of many-sorted structures. A Turing
machine consists of two sets: a set of states and a set of letters; a binary
relation between states and letters; a unary relation, the set of final states;
and a constant, the initial state. Many—sorted structures allow us to model
also concepts which involve sets of sets, such as topologies, families of sub-
groups or whatever comes to ones mind. This last statement is not just a
sloppy way of saying something vague. It really expresses a belief| or rather
experience, that everything which can be modelled in set theoretic terms
with finitely many basic concepts can be modelled by such structures.

In modern terms a structure is a tuple of sets of specified characteristics.
The primitive concepts have names and these names form again a set, called
the vocabulary. A structure then is an interpretation of a vocabulary. More
precisely, a (first order) vocabulary 7 is a set of sort symbols, function
symbols, relation symbols and constant symbols. The function, relation
and constant symbols have an arity which specifies the number and sorts
of the arguments and values. The arity is mostly assumed to be finite. In
this way we can naturally associate with a vocabulary 7 the proper class
of all 7—structures, which we denote by STR(T).

2.2 The Choice of the Vocabulary

The notion of a 7—structure evolved naturally in mathematics, more pre-
cisely in algebra. Groups and fields are usually described as sets with op-
erations, ordered fields are sets with operations and relations. The choice
of the basic operations is in no way trivial. Should we add the inverse
operation as basic or not 7 In the case of arithmetic we have the successor
relation, addition and multiplication. The first order theory of arithmetic is
undecidable, but if we leave out multiplication, it becomes decidable. This
is a dramatic change. Subtraction is definable by a first order formula, so
leaving it out or adding it, does not affect decidability. But 1t does affect
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to number theory (Skolem, Gédel) and finally, of modelling logic within set
theory (Tarski, Vaught). The first two reductions were motivated by the
fundamental questions of the foundations of mathematics, whereas the lat-
ter accepts Bourbaki’s view that set theory is the foundational framework
of mathematics. It is this latter approach which forms the background of
model theory proper. Let us elaborate this further: We take some Naive
Set Theory for granted and attempt to model all objects of mathematical
study within this Set Theory. Without having to bother too much about
the choice of set theory we can model the natural numbers, finite strings,
finite graphs within set theory. We accept the axiom of choice as a fact of
life. With this we can model also most of the concepts of classical algebra
(field theory, ring theory, group theory, but not necessarily cohomology
theory) within set theory. The natural numbers, fields, graphs are mathe-
matical structures which serve as the prime examples for models of logical
theories. We usually think of models of a logical theory rather than of a
single model, and the models form usually a proper class (the class of all
groups, rings, etc.). If we restrict ourselves to finite mathematical struc-
tures we can additionally consider recursive sets of models or sets models
of lower complexity classes (Logarithmic Space or Polynomial Time recog-
nizable classes of models). Next we observe that logical theories are just
sets of formulas and that formulas can be viewed again as either strings
over some alphabet or as some kind of labeled trees. Most people think
of formulas as inherently finite objects, but infinite formulas (then better
viewed as trees) are easily conceivable. So formulas and sets of formulas
can also be modelled in our set theory. If we think of finite formulas as
strings it makes sense to bring in also concepts of recursion theory and
complexity theory.

The basic relationship between sets of formulas and models is the sat-
isfaction relation. We view it here as a ternary relation M (X, A, z), where
Y is a set of formulas, A is a structure, i.e. a generalized algebra over some
vocabulary (similarity type) and z is an assignment function mapping free
variables of the formulas ¥ into elements of the universe of the structure
A. Tt M(X, A, z) holds for every z we simply write A |= ¥ and say that A
is a model of . The characteristic function of the satisfaction relation is
often called meaning function. The meaning function can also be modelled
in set theory.

2.1 First Order Structures

It is customary to model algebraic structures as sets equipped with func-
tions and relations. This view has its origins in algebra as understood in
the 19th century. A structure consists of a set, the universe, equipped with
some relations, functions and constant, which model the primitives.

A group then is a set equipped with a binary function, called mult:-
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competing) cultural systems which are themselves embedded in host cul-
tural systems; that nevertheless the fame and prestige of the protagonists
of science and scientific progress do play an important, possibly also coun-
terproductive role; that cultural stress and cultural lag play a crucial role
in the evolution of concepts; that periods of turmoil are followed by peri-
ods of consolidation after which concepts stabilize; that diffusion between
different fields usually will lead to new concepts and accelerated growth
of science; that environmental stresses created by the host culture and
its subcultures will elicit observable response from the scientific culture in
question; and, finally, revolutions may occur in the metaphysics, symbolism
and methodology of computing science, but not in the core of computing
itself. Wilder has developed in [Wil81] a general theory of ‘Laws’ governing
the evolution of mathematics, from which I have adapted the above state-
ments. It remains a vast research project to assimilate Wilder’s theory
into our context, but it is an indispensable project if we want to adjust our
expectation of progress in computing science to realistic hopes. Wilder’s
work also sheds some light into the real problems underlying the so called
‘software crisis”: The cultural lag of programming practice behind comput-
ing science and the absence of various cultural stresses may account for the
abundance of programming paradigms without the evolution of rigorous
standards of conceptual specifications.

I can only hope that I may contribute my small share to the slow process
of bridging that gap and further the logical foundations of computer science.

Acknowledgements: 1 am indebted to many colleagues who encouraged
me at several stages to pursue my research of model theoretic methods in
computer science. Among them I would like to mention Erwin Engeler,
Eli Shamir, Shimon Even, Vaughan Pratt, Catriel Beeri, Saharon She-
lah, David Harel and Yuri Gurevich. I am also indebted to the graduate
students of my department whose work contributed to my understand-
ing. Among them are Ariel Calo, Yaniv Bargury, Yachin Pnueli and Avy
Sharel. T would like to thank S. Ben—David who allowed me to include his
unpublished results in section 5 and Y. Pnueli, who helped writing section
7. Finally T would like to thank D. Gabbay for inviting me to write this
chapter and for his insisting that I give him this version for publication.

2 The Set Theoretic Modelling of Syntax and
Semantics

Model theory is the mathematical (set theoretical) study of the interplay
between Syntax and Semantics. Historically it has its roots in the various
attempts of reducing first mathematics to logic (Frege, Hilbert), then logic
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For M.N.Y., who emerged into my life
while I was preparing this chapter.

1 Introduction

The purpose of this chapter is to give an account of those aspects of model
theory which we think are relevant to theoretical computer science. We
start with a general outline of the evolution of model theory, which will
serve as an exposition of the major themes. In the subsequent section we
shall elaborate some of these themes and put them into the context of
theoretical computer science.

We assume the reader is familiar with the basics of First Order Logic,
Computability Theory, Complexity Theory and Basic Algebra. Whenever
possible we shall refer to textbooks and monographs rather than the orig-
inal papers. Only material not treated in standard texts will be quoted
in the original (or by referring to a subsequent paper which contains the
result in the most readable form).

This chapter is not meant to be an exhaustive scholarly survey of model
theoretic methods in theoretical computer science. It is more of a personal
guided tour into a well mapped but still largely unexplored landscape. It
has definite autobiographical traits. No author can completely escape that.
It proposes to some extent a unifying view which ultimately should lead
to the disappearance of the personal touch. However, for that to happen
more research and reinterpretation of classical results is needed. Logic and
model theory are relatively old disciplines which enjoy renewed interest.
They can serve as one explanatory paradigm for foundational problems in
theoretical computer science. But the gap between the traditional logi-
cians and mathematicians and the working computer scientists is first of
all cultural in the sense of R. Wilder’s [Wil81]. His studies deserve special
attention especially when one has in mind the evolution and development
of programming languages, operating systems, user interfaces and other
paradigms of computing, but also in addressing foundational questions, cf.
[Mak8§].

Wilder’s studies clearly show several phenomena: that the evolution
of concepts to widely accepted norms of practice takes much longer and
needs more than just the availability of such concepts; that the evolution
of concepts is not due to individuals but is embedded in one (or several
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Abstract

We first review the main developments of model the-
ory as it evolved as a branch of mathematical logic and
examine which developments have a potential for research
in theoretical computer science. We then discuss those
aspects of model theory which we think have the greatest
impact on theoretical computer science in further detail.
Our presentation is not topic oriented but method ori-
ented.
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